@inproceedings{mancini-etal-2024-multimodal,
title = "Multimodal Fallacy Classification in Political Debates",
author = "Mancini, Eleonora and
Ruggeri, Federico and
Torroni, Paolo",
editor = "Graham, Yvette and
Purver, Matthew",
booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.eacl-short.16/",
pages = "170--178",
abstract = "Recent advances in NLP suggest that some tasks, such as argument detection and relation classification, are better framed in a multimodal perspective. We propose multimodal argument mining for argumentative fallacy classification in political debates. To this end, we release the first corpus for multimodal fallacy classification. Our experiments show that the integration of the audio modality leads to superior classification performance. Our findings confirm that framing fallacy classification as a multimodal task is essential to capture paralinguistic aspects of fallacious arguments."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mancini-etal-2024-multimodal">
<titleInfo>
<title>Multimodal Fallacy Classification in Political Debates</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eleonora</namePart>
<namePart type="family">Mancini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Federico</namePart>
<namePart type="family">Ruggeri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paolo</namePart>
<namePart type="family">Torroni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent advances in NLP suggest that some tasks, such as argument detection and relation classification, are better framed in a multimodal perspective. We propose multimodal argument mining for argumentative fallacy classification in political debates. To this end, we release the first corpus for multimodal fallacy classification. Our experiments show that the integration of the audio modality leads to superior classification performance. Our findings confirm that framing fallacy classification as a multimodal task is essential to capture paralinguistic aspects of fallacious arguments.</abstract>
<identifier type="citekey">mancini-etal-2024-multimodal</identifier>
<location>
<url>https://aclanthology.org/2024.eacl-short.16/</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>170</start>
<end>178</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multimodal Fallacy Classification in Political Debates
%A Mancini, Eleonora
%A Ruggeri, Federico
%A Torroni, Paolo
%Y Graham, Yvette
%Y Purver, Matthew
%S Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F mancini-etal-2024-multimodal
%X Recent advances in NLP suggest that some tasks, such as argument detection and relation classification, are better framed in a multimodal perspective. We propose multimodal argument mining for argumentative fallacy classification in political debates. To this end, we release the first corpus for multimodal fallacy classification. Our experiments show that the integration of the audio modality leads to superior classification performance. Our findings confirm that framing fallacy classification as a multimodal task is essential to capture paralinguistic aspects of fallacious arguments.
%U https://aclanthology.org/2024.eacl-short.16/
%P 170-178
Markdown (Informal)
[Multimodal Fallacy Classification in Political Debates](https://aclanthology.org/2024.eacl-short.16/) (Mancini et al., EACL 2024)
ACL
- Eleonora Mancini, Federico Ruggeri, and Paolo Torroni. 2024. Multimodal Fallacy Classification in Political Debates. In Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers), pages 170–178, St. Julian’s, Malta. Association for Computational Linguistics.