@inproceedings{baylor-etal-2024-multilingual,
title = "Multilingual Gradient Word-Order Typology from {U}niversal {D}ependencies",
author = "Baylor, Emi and
Ploeger, Esther and
Bjerva, Johannes",
editor = "Graham, Yvette and
Purver, Matthew",
booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.eacl-short.6",
pages = "42--49",
abstract = "While information from the field of linguistic typology has the potential to improve performance on NLP tasks, reliable typological data is a prerequisite. Existing typological databases, including WALS and Grambank, suffer from inconsistencies primarily caused by their categorical format. Furthermore, typological categorisations by definition differ significantly from the continuous nature of phenomena, as found in natural language corpora. In this paper, we introduce a new seed dataset made up of continuous-valued data, rather than categorical data, that can better reflect the variability of language. While this initial dataset focuses on word-order typology, we also present the methodology used to create the dataset, which can be easily adapted to generate data for a broader set of features and languages.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="baylor-etal-2024-multilingual">
<titleInfo>
<title>Multilingual Gradient Word-Order Typology from Universal Dependencies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emi</namePart>
<namePart type="family">Baylor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Esther</namePart>
<namePart type="family">Ploeger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Bjerva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While information from the field of linguistic typology has the potential to improve performance on NLP tasks, reliable typological data is a prerequisite. Existing typological databases, including WALS and Grambank, suffer from inconsistencies primarily caused by their categorical format. Furthermore, typological categorisations by definition differ significantly from the continuous nature of phenomena, as found in natural language corpora. In this paper, we introduce a new seed dataset made up of continuous-valued data, rather than categorical data, that can better reflect the variability of language. While this initial dataset focuses on word-order typology, we also present the methodology used to create the dataset, which can be easily adapted to generate data for a broader set of features and languages.</abstract>
<identifier type="citekey">baylor-etal-2024-multilingual</identifier>
<location>
<url>https://aclanthology.org/2024.eacl-short.6</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>42</start>
<end>49</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multilingual Gradient Word-Order Typology from Universal Dependencies
%A Baylor, Emi
%A Ploeger, Esther
%A Bjerva, Johannes
%Y Graham, Yvette
%Y Purver, Matthew
%S Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F baylor-etal-2024-multilingual
%X While information from the field of linguistic typology has the potential to improve performance on NLP tasks, reliable typological data is a prerequisite. Existing typological databases, including WALS and Grambank, suffer from inconsistencies primarily caused by their categorical format. Furthermore, typological categorisations by definition differ significantly from the continuous nature of phenomena, as found in natural language corpora. In this paper, we introduce a new seed dataset made up of continuous-valued data, rather than categorical data, that can better reflect the variability of language. While this initial dataset focuses on word-order typology, we also present the methodology used to create the dataset, which can be easily adapted to generate data for a broader set of features and languages.
%U https://aclanthology.org/2024.eacl-short.6
%P 42-49
Markdown (Informal)
[Multilingual Gradient Word-Order Typology from Universal Dependencies](https://aclanthology.org/2024.eacl-short.6) (Baylor et al., EACL 2024)
ACL