@inproceedings{lou-yin-2024-toward,
title = "Toward Zero-Shot Instruction Following",
author = "Lou, Renze and
Yin, Wenpeng",
editor = "Falk, Neele and
Papi, Sara and
Zhang, Mike",
booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.eacl-srw.5",
pages = "50--60",
abstract = "This work proposes a challenging yet more realistic setting for zero-shot cross-task generalization: zero-shot instruction following, presuming the existence of a paragraph-style task definition while no demonstrations exist. To better learn the task supervision from the definition, we propose two strategies: first, to automatically find out the critical sentences in the definition; second, a ranking objective to force the model to generate the gold outputs with higher probabilities when those critical parts are highlighted in the definition. The joint efforts of the two strategies yield state-of-the-art performance on the Super-NaturalInstructions. Our code is available on GitHub.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lou-yin-2024-toward">
<titleInfo>
<title>Toward Zero-Shot Instruction Following</title>
</titleInfo>
<name type="personal">
<namePart type="given">Renze</namePart>
<namePart type="family">Lou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenpeng</namePart>
<namePart type="family">Yin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Neele</namePart>
<namePart type="family">Falk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Papi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mike</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This work proposes a challenging yet more realistic setting for zero-shot cross-task generalization: zero-shot instruction following, presuming the existence of a paragraph-style task definition while no demonstrations exist. To better learn the task supervision from the definition, we propose two strategies: first, to automatically find out the critical sentences in the definition; second, a ranking objective to force the model to generate the gold outputs with higher probabilities when those critical parts are highlighted in the definition. The joint efforts of the two strategies yield state-of-the-art performance on the Super-NaturalInstructions. Our code is available on GitHub.</abstract>
<identifier type="citekey">lou-yin-2024-toward</identifier>
<location>
<url>https://aclanthology.org/2024.eacl-srw.5</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>50</start>
<end>60</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Toward Zero-Shot Instruction Following
%A Lou, Renze
%A Yin, Wenpeng
%Y Falk, Neele
%Y Papi, Sara
%Y Zhang, Mike
%S Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F lou-yin-2024-toward
%X This work proposes a challenging yet more realistic setting for zero-shot cross-task generalization: zero-shot instruction following, presuming the existence of a paragraph-style task definition while no demonstrations exist. To better learn the task supervision from the definition, we propose two strategies: first, to automatically find out the critical sentences in the definition; second, a ranking objective to force the model to generate the gold outputs with higher probabilities when those critical parts are highlighted in the definition. The joint efforts of the two strategies yield state-of-the-art performance on the Super-NaturalInstructions. Our code is available on GitHub.
%U https://aclanthology.org/2024.eacl-srw.5
%P 50-60
Markdown (Informal)
[Toward Zero-Shot Instruction Following](https://aclanthology.org/2024.eacl-srw.5) (Lou & Yin, EACL 2024)
ACL
- Renze Lou and Wenpeng Yin. 2024. Toward Zero-Shot Instruction Following. In Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop, pages 50–60, St. Julian’s, Malta. Association for Computational Linguistics.