@inproceedings{qing-etal-2024-alphalora,
title = "{A}lpha{L}o{RA}: Assigning {L}o{RA} Experts Based on Layer Training Quality",
author = "Qing, Peijun and
Gao, Chongyang and
Zhou, Yefan and
Diao, Xingjian and
Yang, Yaoqing and
Vosoughi, Soroush",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1141/",
doi = "10.18653/v1/2024.emnlp-main.1141",
pages = "20511--20523",
abstract = "Parameter-efficient fine-tuning methods, such as Low-Rank Adaptation (LoRA), are known to enhance training efficiency in Large Language Models (LLMs). Due to the limited parameters of LoRA, recent studies seek to combine LoRA with Mixture-of-Experts (MoE) to boost performance across various tasks. However, inspired by the observed redundancy in traditional MoE structures, prior studies find that LoRA experts within the MoE architecture also exhibit redundancy, suggesting a need to vary the allocation of LoRA experts across different layers. In this paper, we leverage Heavy-Tailed Self-Regularization (HT-SR) Theory to design a fine-grained allocation strategy. Our analysis reveals that the number of experts per layer correlates with layer training quality, which exhibits significant variability across layers. Based on this, we introduce AlphaLoRA, a theoretically principled and training-free method for allocating LoRA experts to reduce redundancy further. Experiments on three models across ten language processing and reasoning benchmarks demonstrate that AlphaLoRA achieves comparable or superior performance over all baselines. Our code is available at https://github.com/morelife2017/alphalora."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qing-etal-2024-alphalora">
<titleInfo>
<title>AlphaLoRA: Assigning LoRA Experts Based on Layer Training Quality</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peijun</namePart>
<namePart type="family">Qing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chongyang</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yefan</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingjian</namePart>
<namePart type="family">Diao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaoqing</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soroush</namePart>
<namePart type="family">Vosoughi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Parameter-efficient fine-tuning methods, such as Low-Rank Adaptation (LoRA), are known to enhance training efficiency in Large Language Models (LLMs). Due to the limited parameters of LoRA, recent studies seek to combine LoRA with Mixture-of-Experts (MoE) to boost performance across various tasks. However, inspired by the observed redundancy in traditional MoE structures, prior studies find that LoRA experts within the MoE architecture also exhibit redundancy, suggesting a need to vary the allocation of LoRA experts across different layers. In this paper, we leverage Heavy-Tailed Self-Regularization (HT-SR) Theory to design a fine-grained allocation strategy. Our analysis reveals that the number of experts per layer correlates with layer training quality, which exhibits significant variability across layers. Based on this, we introduce AlphaLoRA, a theoretically principled and training-free method for allocating LoRA experts to reduce redundancy further. Experiments on three models across ten language processing and reasoning benchmarks demonstrate that AlphaLoRA achieves comparable or superior performance over all baselines. Our code is available at https://github.com/morelife2017/alphalora.</abstract>
<identifier type="citekey">qing-etal-2024-alphalora</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.1141</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1141/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>20511</start>
<end>20523</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AlphaLoRA: Assigning LoRA Experts Based on Layer Training Quality
%A Qing, Peijun
%A Gao, Chongyang
%A Zhou, Yefan
%A Diao, Xingjian
%A Yang, Yaoqing
%A Vosoughi, Soroush
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F qing-etal-2024-alphalora
%X Parameter-efficient fine-tuning methods, such as Low-Rank Adaptation (LoRA), are known to enhance training efficiency in Large Language Models (LLMs). Due to the limited parameters of LoRA, recent studies seek to combine LoRA with Mixture-of-Experts (MoE) to boost performance across various tasks. However, inspired by the observed redundancy in traditional MoE structures, prior studies find that LoRA experts within the MoE architecture also exhibit redundancy, suggesting a need to vary the allocation of LoRA experts across different layers. In this paper, we leverage Heavy-Tailed Self-Regularization (HT-SR) Theory to design a fine-grained allocation strategy. Our analysis reveals that the number of experts per layer correlates with layer training quality, which exhibits significant variability across layers. Based on this, we introduce AlphaLoRA, a theoretically principled and training-free method for allocating LoRA experts to reduce redundancy further. Experiments on three models across ten language processing and reasoning benchmarks demonstrate that AlphaLoRA achieves comparable or superior performance over all baselines. Our code is available at https://github.com/morelife2017/alphalora.
%R 10.18653/v1/2024.emnlp-main.1141
%U https://aclanthology.org/2024.emnlp-main.1141/
%U https://doi.org/10.18653/v1/2024.emnlp-main.1141
%P 20511-20523
Markdown (Informal)
[AlphaLoRA: Assigning LoRA Experts Based on Layer Training Quality](https://aclanthology.org/2024.emnlp-main.1141/) (Qing et al., EMNLP 2024)
ACL
- Peijun Qing, Chongyang Gao, Yefan Zhou, Xingjian Diao, Yaoqing Yang, and Soroush Vosoughi. 2024. AlphaLoRA: Assigning LoRA Experts Based on Layer Training Quality. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 20511–20523, Miami, Florida, USA. Association for Computational Linguistics.