@inproceedings{xu-etal-2024-generator,
title = "What are the Generator Preferences for End-to-end Task-Oriented Dialog System?",
author = "Xu, Wanshi and
Zhuang, Xianwei and
Chen, Zhanpeng and
Zhu, Zhihong and
Cheng, Xuxin and
Zou, Yuexian",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.616/",
doi = "10.18653/v1/2024.emnlp-main.616",
pages = "10992--11003",
abstract = "Fully end-to-end task-oriented dialogue (EToD) systems have shown excellent performance, which requires the ability to retrieve entities accurately for generation. Existing methods improve the accuracy of entity retrieval and construct data flows between retrieval results and response generator, achieving promising results. However, most of them suffer from the following issues: (1) The entity is retrieved by directly interacting with the context at a coarse-grained level, so the similarity score may be disturbed by irrelevant attributes; (2) The generator pays equal attention to retrieved entities and the context and does not learn the generation preferences for the current turn. In this paper, we propose a framework called Regulating Preferences of Generator (RPG) based on retrieval results, which includes a generator preference extractor, an entity retriever, and a generator with the gate-controlled preference regulator. The generator preference extractor not only improves the entity retriever by filtering the interference of irrelevant attributes but also provides more focused guidance to the generator by performing inter-turn attribute prediction. Experiments and analyses on three standard benchmarks show that our framework outperforms existing methods and improves the quality of the dialogue."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2024-generator">
<titleInfo>
<title>What are the Generator Preferences for End-to-end Task-Oriented Dialog System?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanshi</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianwei</namePart>
<namePart type="family">Zhuang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhanpeng</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhihong</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuxin</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuexian</namePart>
<namePart type="family">Zou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Fully end-to-end task-oriented dialogue (EToD) systems have shown excellent performance, which requires the ability to retrieve entities accurately for generation. Existing methods improve the accuracy of entity retrieval and construct data flows between retrieval results and response generator, achieving promising results. However, most of them suffer from the following issues: (1) The entity is retrieved by directly interacting with the context at a coarse-grained level, so the similarity score may be disturbed by irrelevant attributes; (2) The generator pays equal attention to retrieved entities and the context and does not learn the generation preferences for the current turn. In this paper, we propose a framework called Regulating Preferences of Generator (RPG) based on retrieval results, which includes a generator preference extractor, an entity retriever, and a generator with the gate-controlled preference regulator. The generator preference extractor not only improves the entity retriever by filtering the interference of irrelevant attributes but also provides more focused guidance to the generator by performing inter-turn attribute prediction. Experiments and analyses on three standard benchmarks show that our framework outperforms existing methods and improves the quality of the dialogue.</abstract>
<identifier type="citekey">xu-etal-2024-generator</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.616</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.616/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>10992</start>
<end>11003</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T What are the Generator Preferences for End-to-end Task-Oriented Dialog System?
%A Xu, Wanshi
%A Zhuang, Xianwei
%A Chen, Zhanpeng
%A Zhu, Zhihong
%A Cheng, Xuxin
%A Zou, Yuexian
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F xu-etal-2024-generator
%X Fully end-to-end task-oriented dialogue (EToD) systems have shown excellent performance, which requires the ability to retrieve entities accurately for generation. Existing methods improve the accuracy of entity retrieval and construct data flows between retrieval results and response generator, achieving promising results. However, most of them suffer from the following issues: (1) The entity is retrieved by directly interacting with the context at a coarse-grained level, so the similarity score may be disturbed by irrelevant attributes; (2) The generator pays equal attention to retrieved entities and the context and does not learn the generation preferences for the current turn. In this paper, we propose a framework called Regulating Preferences of Generator (RPG) based on retrieval results, which includes a generator preference extractor, an entity retriever, and a generator with the gate-controlled preference regulator. The generator preference extractor not only improves the entity retriever by filtering the interference of irrelevant attributes but also provides more focused guidance to the generator by performing inter-turn attribute prediction. Experiments and analyses on three standard benchmarks show that our framework outperforms existing methods and improves the quality of the dialogue.
%R 10.18653/v1/2024.emnlp-main.616
%U https://aclanthology.org/2024.emnlp-main.616/
%U https://doi.org/10.18653/v1/2024.emnlp-main.616
%P 10992-11003
Markdown (Informal)
[What are the Generator Preferences for End-to-end Task-Oriented Dialog System?](https://aclanthology.org/2024.emnlp-main.616/) (Xu et al., EMNLP 2024)
ACL