@inproceedings{chen-etal-2024-copybench,
title = "{C}opy{B}ench: Measuring Literal and Non-Literal Reproduction of Copyright-Protected Text in Language Model Generation",
author = "Chen, Tong and
Asai, Akari and
Mireshghallah, Niloofar and
Min, Sewon and
Grimmelmann, James and
Choi, Yejin and
Hajishirzi, Hannaneh and
Zettlemoyer, Luke and
Koh, Pang Wei",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.844/",
doi = "10.18653/v1/2024.emnlp-main.844",
pages = "15134--15158",
abstract = "Evaluating the degree of reproduction of copyright-protected content by language models (LMs) is of significant interest to the AI and legal communities. Although both literal and non-literal similarities are considered by courts when assessing the degree of reproduction, prior research has focused only on literal similarities. To bridge this gap, we introduce CopyBench, a benchmark designed to measure both literal and non-literal copying in LM generations. Using copyrighted fiction books as text sources, we provide automatic evaluation protocols to assess literal and non-literal copying, balanced against the model utility in terms of the ability to recall facts from the copyrighted works and generate fluent completions. We find that, although literal copying is relatively rare, two types of non-literal copying{---}event copying and character copying{---}occur even in models as small as 7B parameters. Larger models demonstrate significantly more copying, with literal copying rates increasing from 0.2{\%} to 10.5{\%} and non-literal copying from 2.3{\%} to 5.9{\%} when comparing Llama3-8B and 70B models, respectively. We further evaluate the effectiveness of current strategies for mitigating copying and show that (1) training-time alignment can reduce literal copying but may increase non-literal copying, and (2) current inference-time mitigation methods primarily reduce literal but not non-literal copying."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2024-copybench">
<titleInfo>
<title>CopyBench: Measuring Literal and Non-Literal Reproduction of Copyright-Protected Text in Language Model Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tong</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Akari</namePart>
<namePart type="family">Asai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Niloofar</namePart>
<namePart type="family">Mireshghallah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sewon</namePart>
<namePart type="family">Min</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Grimmelmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yejin</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hannaneh</namePart>
<namePart type="family">Hajishirzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Zettlemoyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pang</namePart>
<namePart type="given">Wei</namePart>
<namePart type="family">Koh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Evaluating the degree of reproduction of copyright-protected content by language models (LMs) is of significant interest to the AI and legal communities. Although both literal and non-literal similarities are considered by courts when assessing the degree of reproduction, prior research has focused only on literal similarities. To bridge this gap, we introduce CopyBench, a benchmark designed to measure both literal and non-literal copying in LM generations. Using copyrighted fiction books as text sources, we provide automatic evaluation protocols to assess literal and non-literal copying, balanced against the model utility in terms of the ability to recall facts from the copyrighted works and generate fluent completions. We find that, although literal copying is relatively rare, two types of non-literal copying—event copying and character copying—occur even in models as small as 7B parameters. Larger models demonstrate significantly more copying, with literal copying rates increasing from 0.2% to 10.5% and non-literal copying from 2.3% to 5.9% when comparing Llama3-8B and 70B models, respectively. We further evaluate the effectiveness of current strategies for mitigating copying and show that (1) training-time alignment can reduce literal copying but may increase non-literal copying, and (2) current inference-time mitigation methods primarily reduce literal but not non-literal copying.</abstract>
<identifier type="citekey">chen-etal-2024-copybench</identifier>
<identifier type="doi">10.18653/v1/2024.emnlp-main.844</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.844/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>15134</start>
<end>15158</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CopyBench: Measuring Literal and Non-Literal Reproduction of Copyright-Protected Text in Language Model Generation
%A Chen, Tong
%A Asai, Akari
%A Mireshghallah, Niloofar
%A Min, Sewon
%A Grimmelmann, James
%A Choi, Yejin
%A Hajishirzi, Hannaneh
%A Zettlemoyer, Luke
%A Koh, Pang Wei
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F chen-etal-2024-copybench
%X Evaluating the degree of reproduction of copyright-protected content by language models (LMs) is of significant interest to the AI and legal communities. Although both literal and non-literal similarities are considered by courts when assessing the degree of reproduction, prior research has focused only on literal similarities. To bridge this gap, we introduce CopyBench, a benchmark designed to measure both literal and non-literal copying in LM generations. Using copyrighted fiction books as text sources, we provide automatic evaluation protocols to assess literal and non-literal copying, balanced against the model utility in terms of the ability to recall facts from the copyrighted works and generate fluent completions. We find that, although literal copying is relatively rare, two types of non-literal copying—event copying and character copying—occur even in models as small as 7B parameters. Larger models demonstrate significantly more copying, with literal copying rates increasing from 0.2% to 10.5% and non-literal copying from 2.3% to 5.9% when comparing Llama3-8B and 70B models, respectively. We further evaluate the effectiveness of current strategies for mitigating copying and show that (1) training-time alignment can reduce literal copying but may increase non-literal copying, and (2) current inference-time mitigation methods primarily reduce literal but not non-literal copying.
%R 10.18653/v1/2024.emnlp-main.844
%U https://aclanthology.org/2024.emnlp-main.844/
%U https://doi.org/10.18653/v1/2024.emnlp-main.844
%P 15134-15158
Markdown (Informal)
[CopyBench: Measuring Literal and Non-Literal Reproduction of Copyright-Protected Text in Language Model Generation](https://aclanthology.org/2024.emnlp-main.844/) (Chen et al., EMNLP 2024)
ACL
- Tong Chen, Akari Asai, Niloofar Mireshghallah, Sewon Min, James Grimmelmann, Yejin Choi, Hannaneh Hajishirzi, Luke Zettlemoyer, and Pang Wei Koh. 2024. CopyBench: Measuring Literal and Non-Literal Reproduction of Copyright-Protected Text in Language Model Generation. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 15134–15158, Miami, Florida, USA. Association for Computational Linguistics.