@inproceedings{wan-etal-2024-dell,
title = "{DELL}: Generating Reactions and Explanations for {LLM}-Based Misinformation Detection",
author = "Wan, Herun and
Feng, Shangbin and
Tan, Zhaoxuan and
Wang, Heng and
Tsvetkov, Yulia and
Luo, Minnan",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand and virtual meeting",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.155",
doi = "10.18653/v1/2024.findings-acl.155",
pages = "2637--2667",
abstract = "Large language models are limited by challenges in factuality and hallucinations to be directly employed off-the-shelf for judging the veracity of news articles, where factual accuracy is paramount. In this work, we propose DELL that identifies three key stages in misinformation detection where LLMs could be incorporated as part of the pipeline: 1) LLMs could generate news reactions to represent diverse perspectives and simulate user-news interaction networks; 2) LLMs could generate explanations for proxy tasks (e.g., sentiment, stance) to enrich the contexts of news articles and produce experts specializing in various aspects of news understanding; 3) LLMs could merge task-specific experts and provide an overall prediction by incorporating the predictions and confidence scores of varying experts. Extensive experiments on seven datasets with three LLMs demonstrate that DELL outperforms state-of-the-art baselines by up to 16.8{\%} in macro f1-score. Further analysis reveals that the generated reactions and explanations are greatly helpful in misinformation detection, while our proposed LLM-guided expert merging helps produce better-calibrated predictions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wan-etal-2024-dell">
<titleInfo>
<title>DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Herun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shangbin</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhaoxuan</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulia</namePart>
<namePart type="family">Tsvetkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minnan</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand and virtual meeting</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large language models are limited by challenges in factuality and hallucinations to be directly employed off-the-shelf for judging the veracity of news articles, where factual accuracy is paramount. In this work, we propose DELL that identifies three key stages in misinformation detection where LLMs could be incorporated as part of the pipeline: 1) LLMs could generate news reactions to represent diverse perspectives and simulate user-news interaction networks; 2) LLMs could generate explanations for proxy tasks (e.g., sentiment, stance) to enrich the contexts of news articles and produce experts specializing in various aspects of news understanding; 3) LLMs could merge task-specific experts and provide an overall prediction by incorporating the predictions and confidence scores of varying experts. Extensive experiments on seven datasets with three LLMs demonstrate that DELL outperforms state-of-the-art baselines by up to 16.8% in macro f1-score. Further analysis reveals that the generated reactions and explanations are greatly helpful in misinformation detection, while our proposed LLM-guided expert merging helps produce better-calibrated predictions.</abstract>
<identifier type="citekey">wan-etal-2024-dell</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.155</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.155</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>2637</start>
<end>2667</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection
%A Wan, Herun
%A Feng, Shangbin
%A Tan, Zhaoxuan
%A Wang, Heng
%A Tsvetkov, Yulia
%A Luo, Minnan
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand and virtual meeting
%F wan-etal-2024-dell
%X Large language models are limited by challenges in factuality and hallucinations to be directly employed off-the-shelf for judging the veracity of news articles, where factual accuracy is paramount. In this work, we propose DELL that identifies three key stages in misinformation detection where LLMs could be incorporated as part of the pipeline: 1) LLMs could generate news reactions to represent diverse perspectives and simulate user-news interaction networks; 2) LLMs could generate explanations for proxy tasks (e.g., sentiment, stance) to enrich the contexts of news articles and produce experts specializing in various aspects of news understanding; 3) LLMs could merge task-specific experts and provide an overall prediction by incorporating the predictions and confidence scores of varying experts. Extensive experiments on seven datasets with three LLMs demonstrate that DELL outperforms state-of-the-art baselines by up to 16.8% in macro f1-score. Further analysis reveals that the generated reactions and explanations are greatly helpful in misinformation detection, while our proposed LLM-guided expert merging helps produce better-calibrated predictions.
%R 10.18653/v1/2024.findings-acl.155
%U https://aclanthology.org/2024.findings-acl.155
%U https://doi.org/10.18653/v1/2024.findings-acl.155
%P 2637-2667
Markdown (Informal)
[DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection](https://aclanthology.org/2024.findings-acl.155) (Wan et al., Findings 2024)
ACL