@inproceedings{svete-etal-2024-efficiently,
title = "On Efficiently Representing Regular Languages as {RNN}s",
author = "Svete, Anej and
Chan, Robin and
Cotterell, Ryan",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.244/",
doi = "10.18653/v1/2024.findings-acl.244",
pages = "4118--4135",
abstract = "Recent work by Hewitt et al. (2020) provides an interpretation of the empirical success of recurrent neural networks (RNNs) as language models (LMs). It shows that RNNs can efficiently represent bounded hierarchical structures that are prevalent in human language.This suggests that RNNs' success might be linked to their ability to model hierarchy. However, a closer inspection of hewitt-etal-2020-rnns construction shows that it is not inherently limited to hierarchical structures. This poses a natural question: What other classes of LMs RNNs can efficiently represent? To this end, we generalize Hewitt et al.`s (2020) construction and show that RNNs can efficiently represent a larger class of LMs than previously claimed{---}specifically, those that can be represented by a pushdown automaton with a bounded stack and a specific stack update function. Altogether, the efficiency of representing this diverse class of LMs with RNN LMs suggests novel interpretations of their inductive bias."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="svete-etal-2024-efficiently">
<titleInfo>
<title>On Efficiently Representing Regular Languages as RNNs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anej</namePart>
<namePart type="family">Svete</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robin</namePart>
<namePart type="family">Chan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent work by Hewitt et al. (2020) provides an interpretation of the empirical success of recurrent neural networks (RNNs) as language models (LMs). It shows that RNNs can efficiently represent bounded hierarchical structures that are prevalent in human language.This suggests that RNNs’ success might be linked to their ability to model hierarchy. However, a closer inspection of hewitt-etal-2020-rnns construction shows that it is not inherently limited to hierarchical structures. This poses a natural question: What other classes of LMs RNNs can efficiently represent? To this end, we generalize Hewitt et al.‘s (2020) construction and show that RNNs can efficiently represent a larger class of LMs than previously claimed—specifically, those that can be represented by a pushdown automaton with a bounded stack and a specific stack update function. Altogether, the efficiency of representing this diverse class of LMs with RNN LMs suggests novel interpretations of their inductive bias.</abstract>
<identifier type="citekey">svete-etal-2024-efficiently</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.244</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.244/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>4118</start>
<end>4135</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On Efficiently Representing Regular Languages as RNNs
%A Svete, Anej
%A Chan, Robin
%A Cotterell, Ryan
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F svete-etal-2024-efficiently
%X Recent work by Hewitt et al. (2020) provides an interpretation of the empirical success of recurrent neural networks (RNNs) as language models (LMs). It shows that RNNs can efficiently represent bounded hierarchical structures that are prevalent in human language.This suggests that RNNs’ success might be linked to their ability to model hierarchy. However, a closer inspection of hewitt-etal-2020-rnns construction shows that it is not inherently limited to hierarchical structures. This poses a natural question: What other classes of LMs RNNs can efficiently represent? To this end, we generalize Hewitt et al.‘s (2020) construction and show that RNNs can efficiently represent a larger class of LMs than previously claimed—specifically, those that can be represented by a pushdown automaton with a bounded stack and a specific stack update function. Altogether, the efficiency of representing this diverse class of LMs with RNN LMs suggests novel interpretations of their inductive bias.
%R 10.18653/v1/2024.findings-acl.244
%U https://aclanthology.org/2024.findings-acl.244/
%U https://doi.org/10.18653/v1/2024.findings-acl.244
%P 4118-4135
Markdown (Informal)
[On Efficiently Representing Regular Languages as RNNs](https://aclanthology.org/2024.findings-acl.244/) (Svete et al., Findings 2024)
ACL