@inproceedings{chen-etal-2024-vision,
title = "Your Vision-Language Model Itself Is a Strong Filter: Towards High-Quality Instruction Tuning with Data Selection",
author = "Chen, Ruibo and
Wu, Yihan and
Chen, Lichang and
Liu, Guodong and
He, Qi and
Xiong, Tianyi and
Liu, Chenxi and
Guo, Junfeng and
Huang, Heng",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand and virtual meeting",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.246",
doi = "10.18653/v1/2024.findings-acl.246",
pages = "4156--4172",
abstract = "Data selection in instruction tuning emerges as a pivotal process for acquiring high-quality data and training instruction-following large language models (LLMs), but it is still a new and unexplored research area for vision-language models (VLMs). Existing data selection approaches on LLMs either rely on single unreliable scores, or use downstream tasks for selection, which is time-consuming and can lead to potential over-fitting on the chosen evaluation datasets. To address this challenge, we introduce a novel dataset selection method, Self-Filter, that utilizes the VLM itself as a filter. This approach is inspired by the observation that VLMs benefit from training with the most challenging instructions. Self-Filter operates in two stages. In the first stage, we devise a scoring network to evaluate the difficulty of training instructions, which is co-trained with the VLM. In the second stage, we use the trained score net to measure the difficulty of each instruction, select the most challenging samples, and penalize similar samples to encourage diversity. Comprehensive experiments on LLaVA and MiniGPT-4 show that Self-Filter can reach better results compared to full data settings with merely about 15{\%} samples, and can achieve superior performance against competitive baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2024-vision">
<titleInfo>
<title>Your Vision-Language Model Itself Is a Strong Filter: Towards High-Quality Instruction Tuning with Data Selection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruibo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yihan</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lichang</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guodong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianyi</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenxi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junfeng</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand and virtual meeting</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Data selection in instruction tuning emerges as a pivotal process for acquiring high-quality data and training instruction-following large language models (LLMs), but it is still a new and unexplored research area for vision-language models (VLMs). Existing data selection approaches on LLMs either rely on single unreliable scores, or use downstream tasks for selection, which is time-consuming and can lead to potential over-fitting on the chosen evaluation datasets. To address this challenge, we introduce a novel dataset selection method, Self-Filter, that utilizes the VLM itself as a filter. This approach is inspired by the observation that VLMs benefit from training with the most challenging instructions. Self-Filter operates in two stages. In the first stage, we devise a scoring network to evaluate the difficulty of training instructions, which is co-trained with the VLM. In the second stage, we use the trained score net to measure the difficulty of each instruction, select the most challenging samples, and penalize similar samples to encourage diversity. Comprehensive experiments on LLaVA and MiniGPT-4 show that Self-Filter can reach better results compared to full data settings with merely about 15% samples, and can achieve superior performance against competitive baselines.</abstract>
<identifier type="citekey">chen-etal-2024-vision</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.246</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.246</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>4156</start>
<end>4172</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Your Vision-Language Model Itself Is a Strong Filter: Towards High-Quality Instruction Tuning with Data Selection
%A Chen, Ruibo
%A Wu, Yihan
%A Chen, Lichang
%A Liu, Guodong
%A He, Qi
%A Xiong, Tianyi
%A Liu, Chenxi
%A Guo, Junfeng
%A Huang, Heng
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand and virtual meeting
%F chen-etal-2024-vision
%X Data selection in instruction tuning emerges as a pivotal process for acquiring high-quality data and training instruction-following large language models (LLMs), but it is still a new and unexplored research area for vision-language models (VLMs). Existing data selection approaches on LLMs either rely on single unreliable scores, or use downstream tasks for selection, which is time-consuming and can lead to potential over-fitting on the chosen evaluation datasets. To address this challenge, we introduce a novel dataset selection method, Self-Filter, that utilizes the VLM itself as a filter. This approach is inspired by the observation that VLMs benefit from training with the most challenging instructions. Self-Filter operates in two stages. In the first stage, we devise a scoring network to evaluate the difficulty of training instructions, which is co-trained with the VLM. In the second stage, we use the trained score net to measure the difficulty of each instruction, select the most challenging samples, and penalize similar samples to encourage diversity. Comprehensive experiments on LLaVA and MiniGPT-4 show that Self-Filter can reach better results compared to full data settings with merely about 15% samples, and can achieve superior performance against competitive baselines.
%R 10.18653/v1/2024.findings-acl.246
%U https://aclanthology.org/2024.findings-acl.246
%U https://doi.org/10.18653/v1/2024.findings-acl.246
%P 4156-4172
Markdown (Informal)
[Your Vision-Language Model Itself Is a Strong Filter: Towards High-Quality Instruction Tuning with Data Selection](https://aclanthology.org/2024.findings-acl.246) (Chen et al., Findings 2024)
ACL
- Ruibo Chen, Yihan Wu, Lichang Chen, Guodong Liu, Qi He, Tianyi Xiong, Chenxi Liu, Junfeng Guo, and Heng Huang. 2024. Your Vision-Language Model Itself Is a Strong Filter: Towards High-Quality Instruction Tuning with Data Selection. In Findings of the Association for Computational Linguistics ACL 2024, pages 4156–4172, Bangkok, Thailand and virtual meeting. Association for Computational Linguistics.