@inproceedings{mou-etal-2024-unveiling,
title = "Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Simulation",
author = "Mou, Xinyi and
Wei, Zhongyu and
Huang, Xuanjing",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.285/",
doi = "10.18653/v1/2024.findings-acl.285",
pages = "4789--4809",
abstract = "Social media has emerged as a cornerstone of social movements, wielding significant influence in driving societal change. Simulating the response of the public and forecasting the potential impact has become increasingly important. However, existing methods for simulating such phenomena encounter challenges concerning their efficacy and efficiency in capturing the behaviors of social movement participants. In this paper, we introduce a hybrid framework for social media user simulation, wherein users are categorized into two types. Core users are driven by Large Language Models, while numerous ordinary users are modeled by deductive agent-based models. We further construct a Twitter-like environment to replicate their response dynamics following trigger events. Subsequently, we develop a multi-faceted benchmark SoMoSiMu-Bench for evaluation and conduct comprehensive experiments across real-world datasets. Experimental results demonstrate the effectiveness and flexibility of our method."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mou-etal-2024-unveiling">
<titleInfo>
<title>Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Simulation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xinyi</namePart>
<namePart type="family">Mou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhongyu</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Social media has emerged as a cornerstone of social movements, wielding significant influence in driving societal change. Simulating the response of the public and forecasting the potential impact has become increasingly important. However, existing methods for simulating such phenomena encounter challenges concerning their efficacy and efficiency in capturing the behaviors of social movement participants. In this paper, we introduce a hybrid framework for social media user simulation, wherein users are categorized into two types. Core users are driven by Large Language Models, while numerous ordinary users are modeled by deductive agent-based models. We further construct a Twitter-like environment to replicate their response dynamics following trigger events. Subsequently, we develop a multi-faceted benchmark SoMoSiMu-Bench for evaluation and conduct comprehensive experiments across real-world datasets. Experimental results demonstrate the effectiveness and flexibility of our method.</abstract>
<identifier type="citekey">mou-etal-2024-unveiling</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.285</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.285/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>4789</start>
<end>4809</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Simulation
%A Mou, Xinyi
%A Wei, Zhongyu
%A Huang, Xuanjing
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F mou-etal-2024-unveiling
%X Social media has emerged as a cornerstone of social movements, wielding significant influence in driving societal change. Simulating the response of the public and forecasting the potential impact has become increasingly important. However, existing methods for simulating such phenomena encounter challenges concerning their efficacy and efficiency in capturing the behaviors of social movement participants. In this paper, we introduce a hybrid framework for social media user simulation, wherein users are categorized into two types. Core users are driven by Large Language Models, while numerous ordinary users are modeled by deductive agent-based models. We further construct a Twitter-like environment to replicate their response dynamics following trigger events. Subsequently, we develop a multi-faceted benchmark SoMoSiMu-Bench for evaluation and conduct comprehensive experiments across real-world datasets. Experimental results demonstrate the effectiveness and flexibility of our method.
%R 10.18653/v1/2024.findings-acl.285
%U https://aclanthology.org/2024.findings-acl.285/
%U https://doi.org/10.18653/v1/2024.findings-acl.285
%P 4789-4809
Markdown (Informal)
[Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Simulation](https://aclanthology.org/2024.findings-acl.285/) (Mou et al., Findings 2024)
ACL