@inproceedings{zhao-etal-2024-language,
title = "On the Language Encoder of Contrastive Cross-modal Models",
author = "Zhao, Mengjie and
Ono, Junya and
Zhong, Zhi and
Lai, Chieh-Hsin and
Takida, Yuhta and
Murata, Naoki and
Liao, Wei-Hsiang and
Shibuya, Takashi and
Wakaki, Hiromi and
Mitsufuji, Yuki",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.293",
doi = "10.18653/v1/2024.findings-acl.293",
pages = "4923--4940",
abstract = "Contrastive cross-modal models such as CLIP and CLAP aid various vision-language (VL) and audio-language (AL) tasks. However, there has been limited investigation of and improvement in their language encoder {--} the central component of encoding natural language descriptions of image/audio into vector representations. We extensively evaluate how unsupervised and supervised sentence embedding training affect language encoder quality and cross-modal task performance. In VL pretraining, we found that sentence embedding training enhances language encoder quality and aids in cross-modal tasks, improving contrastive VL models such as CyCLIP. Sentence embedding training benefits AL tasks when the amount of training data is large. We analyze the representation spaces to understand the strengths of sentence embedding training, and find that it improves text-space uniformity, at the cost of decreased cross-modal alignment.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2024-language">
<titleInfo>
<title>On the Language Encoder of Contrastive Cross-modal Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mengjie</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junya</namePart>
<namePart type="family">Ono</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhi</namePart>
<namePart type="family">Zhong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chieh-Hsin</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuhta</namePart>
<namePart type="family">Takida</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoki</namePart>
<namePart type="family">Murata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei-Hsiang</namePart>
<namePart type="family">Liao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takashi</namePart>
<namePart type="family">Shibuya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiromi</namePart>
<namePart type="family">Wakaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuki</namePart>
<namePart type="family">Mitsufuji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Contrastive cross-modal models such as CLIP and CLAP aid various vision-language (VL) and audio-language (AL) tasks. However, there has been limited investigation of and improvement in their language encoder – the central component of encoding natural language descriptions of image/audio into vector representations. We extensively evaluate how unsupervised and supervised sentence embedding training affect language encoder quality and cross-modal task performance. In VL pretraining, we found that sentence embedding training enhances language encoder quality and aids in cross-modal tasks, improving contrastive VL models such as CyCLIP. Sentence embedding training benefits AL tasks when the amount of training data is large. We analyze the representation spaces to understand the strengths of sentence embedding training, and find that it improves text-space uniformity, at the cost of decreased cross-modal alignment.</abstract>
<identifier type="citekey">zhao-etal-2024-language</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.293</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.293</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>4923</start>
<end>4940</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T On the Language Encoder of Contrastive Cross-modal Models
%A Zhao, Mengjie
%A Ono, Junya
%A Zhong, Zhi
%A Lai, Chieh-Hsin
%A Takida, Yuhta
%A Murata, Naoki
%A Liao, Wei-Hsiang
%A Shibuya, Takashi
%A Wakaki, Hiromi
%A Mitsufuji, Yuki
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F zhao-etal-2024-language
%X Contrastive cross-modal models such as CLIP and CLAP aid various vision-language (VL) and audio-language (AL) tasks. However, there has been limited investigation of and improvement in their language encoder – the central component of encoding natural language descriptions of image/audio into vector representations. We extensively evaluate how unsupervised and supervised sentence embedding training affect language encoder quality and cross-modal task performance. In VL pretraining, we found that sentence embedding training enhances language encoder quality and aids in cross-modal tasks, improving contrastive VL models such as CyCLIP. Sentence embedding training benefits AL tasks when the amount of training data is large. We analyze the representation spaces to understand the strengths of sentence embedding training, and find that it improves text-space uniformity, at the cost of decreased cross-modal alignment.
%R 10.18653/v1/2024.findings-acl.293
%U https://aclanthology.org/2024.findings-acl.293
%U https://doi.org/10.18653/v1/2024.findings-acl.293
%P 4923-4940
Markdown (Informal)
[On the Language Encoder of Contrastive Cross-modal Models](https://aclanthology.org/2024.findings-acl.293) (Zhao et al., Findings 2024)
ACL
- Mengjie Zhao, Junya Ono, Zhi Zhong, Chieh-Hsin Lai, Yuhta Takida, Naoki Murata, Wei-Hsiang Liao, Takashi Shibuya, Hiromi Wakaki, and Yuki Mitsufuji. 2024. On the Language Encoder of Contrastive Cross-modal Models. In Findings of the Association for Computational Linguistics: ACL 2024, pages 4923–4940, Bangkok, Thailand. Association for Computational Linguistics.