@inproceedings{gu-yang-2024-plan,
title = "Plan, Generate and Complicate: Improving Low-resource Dialogue State Tracking via Easy-to-Difficult Zero-shot Data Augmentation",
author = "Gu, Ming and
Yang, Yan",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.417/",
doi = "10.18653/v1/2024.findings-acl.417",
pages = "6988--7005",
abstract = "Data augmentation methods have been a promising direction to improve the performance of small models for low-resource dialogue state tracking. However, traditional methods rely on pre-defined user goals and neglect the importance of data complexity in this task. In this paper, we propose EDZ-DA, an Easy-to-Difficult Zero-shot Data Augmentation framework for low-resource dialogue state tracking that utilizes large language models to automatically catch the relationships of different domains and then generate the dialogue data. We also complicate the dialogues based on the domain relation to enhance the model`s capability for co-reference slot tracking. Furthermore, we permute slot values to mitigate the influence of output orders and the problem of incomplete value generation. Experimental results illustrate the superiority of our proposed method compared to previous strong data augmentation baselines on MultiWOZ."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gu-yang-2024-plan">
<titleInfo>
<title>Plan, Generate and Complicate: Improving Low-resource Dialogue State Tracking via Easy-to-Difficult Zero-shot Data Augmentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Data augmentation methods have been a promising direction to improve the performance of small models for low-resource dialogue state tracking. However, traditional methods rely on pre-defined user goals and neglect the importance of data complexity in this task. In this paper, we propose EDZ-DA, an Easy-to-Difficult Zero-shot Data Augmentation framework for low-resource dialogue state tracking that utilizes large language models to automatically catch the relationships of different domains and then generate the dialogue data. We also complicate the dialogues based on the domain relation to enhance the model‘s capability for co-reference slot tracking. Furthermore, we permute slot values to mitigate the influence of output orders and the problem of incomplete value generation. Experimental results illustrate the superiority of our proposed method compared to previous strong data augmentation baselines on MultiWOZ.</abstract>
<identifier type="citekey">gu-yang-2024-plan</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.417</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.417/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>6988</start>
<end>7005</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Plan, Generate and Complicate: Improving Low-resource Dialogue State Tracking via Easy-to-Difficult Zero-shot Data Augmentation
%A Gu, Ming
%A Yang, Yan
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F gu-yang-2024-plan
%X Data augmentation methods have been a promising direction to improve the performance of small models for low-resource dialogue state tracking. However, traditional methods rely on pre-defined user goals and neglect the importance of data complexity in this task. In this paper, we propose EDZ-DA, an Easy-to-Difficult Zero-shot Data Augmentation framework for low-resource dialogue state tracking that utilizes large language models to automatically catch the relationships of different domains and then generate the dialogue data. We also complicate the dialogues based on the domain relation to enhance the model‘s capability for co-reference slot tracking. Furthermore, we permute slot values to mitigate the influence of output orders and the problem of incomplete value generation. Experimental results illustrate the superiority of our proposed method compared to previous strong data augmentation baselines on MultiWOZ.
%R 10.18653/v1/2024.findings-acl.417
%U https://aclanthology.org/2024.findings-acl.417/
%U https://doi.org/10.18653/v1/2024.findings-acl.417
%P 6988-7005
Markdown (Informal)
[Plan, Generate and Complicate: Improving Low-resource Dialogue State Tracking via Easy-to-Difficult Zero-shot Data Augmentation](https://aclanthology.org/2024.findings-acl.417/) (Gu & Yang, Findings 2024)
ACL