@inproceedings{ma-etal-2024-coco,
title = "{C}o{C}o-Agent: A Comprehensive Cognitive {MLLM} Agent for Smartphone {GUI} Automation",
author = "Ma, Xinbei and
Zhang, Zhuosheng and
Zhao, Hai",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.539/",
doi = "10.18653/v1/2024.findings-acl.539",
pages = "9097--9110",
abstract = "Multimodal large language models (MLLMs) have shown remarkable potential as human-like autonomous language agents to interact with real-world environments, especially for graphical user interface (GUI) automation.However, those GUI agents require comprehensive cognition including exhaustive perception and reliable action response.We propose a Comprehensive Cognitive LLM Agent, CoCo-Agent, with two novel approaches, comprehensive environment perception (CEP) and conditional action prediction (CAP), to systematically improve the GUI automation performance. First, CEP facilitates the GUI perception through different aspects and granularity, including screenshots and complementary detailed layouts for the visual channel and historical actions for the textual channel.Second, CAP decomposes the action prediction into sub-problems: determining the action type and then identifying the action target conditioned on the action type.With our technical design, our agent achieves state-of-the-art performance on AITW and META-GUI benchmarks, showing promising abilities in realistic scenarios. Code is available at \url{https://github.com/xbmxb/CoCo-Agent}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ma-etal-2024-coco">
<titleInfo>
<title>CoCo-Agent: A Comprehensive Cognitive MLLM Agent for Smartphone GUI Automation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xinbei</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhuosheng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hai</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multimodal large language models (MLLMs) have shown remarkable potential as human-like autonomous language agents to interact with real-world environments, especially for graphical user interface (GUI) automation.However, those GUI agents require comprehensive cognition including exhaustive perception and reliable action response.We propose a Comprehensive Cognitive LLM Agent, CoCo-Agent, with two novel approaches, comprehensive environment perception (CEP) and conditional action prediction (CAP), to systematically improve the GUI automation performance. First, CEP facilitates the GUI perception through different aspects and granularity, including screenshots and complementary detailed layouts for the visual channel and historical actions for the textual channel.Second, CAP decomposes the action prediction into sub-problems: determining the action type and then identifying the action target conditioned on the action type.With our technical design, our agent achieves state-of-the-art performance on AITW and META-GUI benchmarks, showing promising abilities in realistic scenarios. Code is available at https://github.com/xbmxb/CoCo-Agent.</abstract>
<identifier type="citekey">ma-etal-2024-coco</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.539</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.539/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>9097</start>
<end>9110</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CoCo-Agent: A Comprehensive Cognitive MLLM Agent for Smartphone GUI Automation
%A Ma, Xinbei
%A Zhang, Zhuosheng
%A Zhao, Hai
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F ma-etal-2024-coco
%X Multimodal large language models (MLLMs) have shown remarkable potential as human-like autonomous language agents to interact with real-world environments, especially for graphical user interface (GUI) automation.However, those GUI agents require comprehensive cognition including exhaustive perception and reliable action response.We propose a Comprehensive Cognitive LLM Agent, CoCo-Agent, with two novel approaches, comprehensive environment perception (CEP) and conditional action prediction (CAP), to systematically improve the GUI automation performance. First, CEP facilitates the GUI perception through different aspects and granularity, including screenshots and complementary detailed layouts for the visual channel and historical actions for the textual channel.Second, CAP decomposes the action prediction into sub-problems: determining the action type and then identifying the action target conditioned on the action type.With our technical design, our agent achieves state-of-the-art performance on AITW and META-GUI benchmarks, showing promising abilities in realistic scenarios. Code is available at https://github.com/xbmxb/CoCo-Agent.
%R 10.18653/v1/2024.findings-acl.539
%U https://aclanthology.org/2024.findings-acl.539/
%U https://doi.org/10.18653/v1/2024.findings-acl.539
%P 9097-9110
Markdown (Informal)
[CoCo-Agent: A Comprehensive Cognitive MLLM Agent for Smartphone GUI Automation](https://aclanthology.org/2024.findings-acl.539/) (Ma et al., Findings 2024)
ACL