@inproceedings{ma-etal-2024-debiasing,
title = "Debiasing Large Language Models with Structured Knowledge",
author = "Ma, Congda and
Zhao, Tianyu and
Okumura, Manabu",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.612/",
doi = "10.18653/v1/2024.findings-acl.612",
pages = "10274--10287",
abstract = "Due to biases inherently present in data for pre-training, current pre-trained Large Language Models (LLMs) also ubiquitously manifest the same phenomena. Since the bias influences the output from the LLMs across various tasks, the widespread deployment of the LLMs is hampered. We propose a simple method that utilizes structured knowledge to alleviate this issue, aiming to reduce the bias embedded within the LLMs and ensuring they have an encompassing perspective when used in applications. Experimental results indicated that our method has good debiasing ability when applied to existing both autoregressive and masked language models. Additionally, it could ensure that the performances of LLMs on downstream tasks remain uncompromised.Our method outperforms state-of-the-art (SOTA) baselines in the debiasing ability. Importantly, our method obviates the need for training from scratch, thus offering enhanced scalability and cost-effectiveness."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ma-etal-2024-debiasing">
<titleInfo>
<title>Debiasing Large Language Models with Structured Knowledge</title>
</titleInfo>
<name type="personal">
<namePart type="given">Congda</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianyu</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manabu</namePart>
<namePart type="family">Okumura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Due to biases inherently present in data for pre-training, current pre-trained Large Language Models (LLMs) also ubiquitously manifest the same phenomena. Since the bias influences the output from the LLMs across various tasks, the widespread deployment of the LLMs is hampered. We propose a simple method that utilizes structured knowledge to alleviate this issue, aiming to reduce the bias embedded within the LLMs and ensuring they have an encompassing perspective when used in applications. Experimental results indicated that our method has good debiasing ability when applied to existing both autoregressive and masked language models. Additionally, it could ensure that the performances of LLMs on downstream tasks remain uncompromised.Our method outperforms state-of-the-art (SOTA) baselines in the debiasing ability. Importantly, our method obviates the need for training from scratch, thus offering enhanced scalability and cost-effectiveness.</abstract>
<identifier type="citekey">ma-etal-2024-debiasing</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.612</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.612/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>10274</start>
<end>10287</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Debiasing Large Language Models with Structured Knowledge
%A Ma, Congda
%A Zhao, Tianyu
%A Okumura, Manabu
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F ma-etal-2024-debiasing
%X Due to biases inherently present in data for pre-training, current pre-trained Large Language Models (LLMs) also ubiquitously manifest the same phenomena. Since the bias influences the output from the LLMs across various tasks, the widespread deployment of the LLMs is hampered. We propose a simple method that utilizes structured knowledge to alleviate this issue, aiming to reduce the bias embedded within the LLMs and ensuring they have an encompassing perspective when used in applications. Experimental results indicated that our method has good debiasing ability when applied to existing both autoregressive and masked language models. Additionally, it could ensure that the performances of LLMs on downstream tasks remain uncompromised.Our method outperforms state-of-the-art (SOTA) baselines in the debiasing ability. Importantly, our method obviates the need for training from scratch, thus offering enhanced scalability and cost-effectiveness.
%R 10.18653/v1/2024.findings-acl.612
%U https://aclanthology.org/2024.findings-acl.612/
%U https://doi.org/10.18653/v1/2024.findings-acl.612
%P 10274-10287
Markdown (Informal)
[Debiasing Large Language Models with Structured Knowledge](https://aclanthology.org/2024.findings-acl.612/) (Ma et al., Findings 2024)
ACL