@inproceedings{saleva-lignos-2024-language,
title = "Language Model Priors and Data Augmentation Strategies for Low-resource Machine Translation: A Case Study Using {F}innish to {N}orthern {S}{\'a}mi",
author = {S{\"a}lev{\"a}, Jonne and
Lignos, Constantine},
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.768/",
doi = "10.18653/v1/2024.findings-acl.768",
pages = "12949--12956",
abstract = "We investigate ways of using monolingual data in both the source and target languages for improving low-resource machine translation. As a case study, we experiment with translation from Finnish to Northern S{\'a}mi.Our experiments show that while conventional backtranslation remains a strong contender, using synthetic target-side data when training backtranslation models can be helpful as well.We also show that monolingual data can be used to train a language model which can act as a regularizer without any augmentation of parallel data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="saleva-lignos-2024-language">
<titleInfo>
<title>Language Model Priors and Data Augmentation Strategies for Low-resource Machine Translation: A Case Study Using Finnish to Northern Sámi</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonne</namePart>
<namePart type="family">Sälevä</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Constantine</namePart>
<namePart type="family">Lignos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate ways of using monolingual data in both the source and target languages for improving low-resource machine translation. As a case study, we experiment with translation from Finnish to Northern Sámi.Our experiments show that while conventional backtranslation remains a strong contender, using synthetic target-side data when training backtranslation models can be helpful as well.We also show that monolingual data can be used to train a language model which can act as a regularizer without any augmentation of parallel data.</abstract>
<identifier type="citekey">saleva-lignos-2024-language</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.768</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.768/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>12949</start>
<end>12956</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Language Model Priors and Data Augmentation Strategies for Low-resource Machine Translation: A Case Study Using Finnish to Northern Sámi
%A Sälevä, Jonne
%A Lignos, Constantine
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics: ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F saleva-lignos-2024-language
%X We investigate ways of using monolingual data in both the source and target languages for improving low-resource machine translation. As a case study, we experiment with translation from Finnish to Northern Sámi.Our experiments show that while conventional backtranslation remains a strong contender, using synthetic target-side data when training backtranslation models can be helpful as well.We also show that monolingual data can be used to train a language model which can act as a regularizer without any augmentation of parallel data.
%R 10.18653/v1/2024.findings-acl.768
%U https://aclanthology.org/2024.findings-acl.768/
%U https://doi.org/10.18653/v1/2024.findings-acl.768
%P 12949-12956
Markdown (Informal)
[Language Model Priors and Data Augmentation Strategies for Low-resource Machine Translation: A Case Study Using Finnish to Northern Sámi](https://aclanthology.org/2024.findings-acl.768/) (Sälevä & Lignos, Findings 2024)
ACL