@inproceedings{wang-etal-2024-modeling,
title = "Modeling News Interactions and Influence for Financial Market Prediction",
author = "Wang, Mengyu and
Cohen, Shay B and
Ma, Tiejun",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.189/",
doi = "10.18653/v1/2024.findings-emnlp.189",
pages = "3302--3314",
abstract = "The diffusion of financial news into market prices is a complex process, making it challenging to evaluate the connections between news events and market movements. This paper introduces FININ (Financial Interconnected News Influence Network), a novel market prediction model that captures not only the links between news and prices but also the interactions among news items themselves. FININ effectively integrates multi-modal information from both market data and news articles. We conduct extensive experiments on two datasets, encompassing the S{\&}P 500 and NASDAQ 100 indices over a 15-year period and over 2.7 million news articles. The results demonstrate FININ`s effectiveness, outperforming advanced market prediction models with an improvement of 0.429 and 0.341 in the daily Sharpe ratio for the two markets respectively. Moreover, our results reveal insights into the financial news, including the delayed market pricing of news, the long memory effect of news, and the limitations of financial sentiment analysis in fully extracting predictive power from news data."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2024-modeling">
<titleInfo>
<title>Modeling News Interactions and Influence for Financial Market Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mengyu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shay</namePart>
<namePart type="given">B</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiejun</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The diffusion of financial news into market prices is a complex process, making it challenging to evaluate the connections between news events and market movements. This paper introduces FININ (Financial Interconnected News Influence Network), a novel market prediction model that captures not only the links between news and prices but also the interactions among news items themselves. FININ effectively integrates multi-modal information from both market data and news articles. We conduct extensive experiments on two datasets, encompassing the S&P 500 and NASDAQ 100 indices over a 15-year period and over 2.7 million news articles. The results demonstrate FININ‘s effectiveness, outperforming advanced market prediction models with an improvement of 0.429 and 0.341 in the daily Sharpe ratio for the two markets respectively. Moreover, our results reveal insights into the financial news, including the delayed market pricing of news, the long memory effect of news, and the limitations of financial sentiment analysis in fully extracting predictive power from news data.</abstract>
<identifier type="citekey">wang-etal-2024-modeling</identifier>
<identifier type="doi">10.18653/v1/2024.findings-emnlp.189</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.189/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>3302</start>
<end>3314</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Modeling News Interactions and Influence for Financial Market Prediction
%A Wang, Mengyu
%A Cohen, Shay B.
%A Ma, Tiejun
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F wang-etal-2024-modeling
%X The diffusion of financial news into market prices is a complex process, making it challenging to evaluate the connections between news events and market movements. This paper introduces FININ (Financial Interconnected News Influence Network), a novel market prediction model that captures not only the links between news and prices but also the interactions among news items themselves. FININ effectively integrates multi-modal information from both market data and news articles. We conduct extensive experiments on two datasets, encompassing the S&P 500 and NASDAQ 100 indices over a 15-year period and over 2.7 million news articles. The results demonstrate FININ‘s effectiveness, outperforming advanced market prediction models with an improvement of 0.429 and 0.341 in the daily Sharpe ratio for the two markets respectively. Moreover, our results reveal insights into the financial news, including the delayed market pricing of news, the long memory effect of news, and the limitations of financial sentiment analysis in fully extracting predictive power from news data.
%R 10.18653/v1/2024.findings-emnlp.189
%U https://aclanthology.org/2024.findings-emnlp.189/
%U https://doi.org/10.18653/v1/2024.findings-emnlp.189
%P 3302-3314
Markdown (Informal)
[Modeling News Interactions and Influence for Financial Market Prediction](https://aclanthology.org/2024.findings-emnlp.189/) (Wang et al., Findings 2024)
ACL