@inproceedings{zahid-etal-2024-multi,
title = "Multi-Loss Fusion: Angular and Contrastive Integration for Machine-Generated Text Detection",
author = "Zahid, Iqra and
Chang, Yue and
Madusanka, Tharindu and
Sun, Youcheng and
Batista-Navarro, Riza",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.421/",
doi = "10.18653/v1/2024.findings-emnlp.421",
pages = "7189--7202",
abstract = "Modern natural language generation (NLG) systems have led to the development of synthetic human-like open-ended texts, posing concerns as to who the original author of a text is. To address such concerns, we introduce DeB-Ang: the utilisation of a custom DeBERTa model with angular loss and contrastive loss functions for effective class separation in neural text classification tasks. We expand the application of this model on binary machine-generated text detection and multi-class neural authorship attribution. We demonstrate improved performance on many benchmark datasets whereby the accuracy for machine-generated text detection was increased by as much as 38.04{\%} across all datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zahid-etal-2024-multi">
<titleInfo>
<title>Multi-Loss Fusion: Angular and Contrastive Integration for Machine-Generated Text Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Iqra</namePart>
<namePart type="family">Zahid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tharindu</namePart>
<namePart type="family">Madusanka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Youcheng</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Riza</namePart>
<namePart type="family">Batista-Navarro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Modern natural language generation (NLG) systems have led to the development of synthetic human-like open-ended texts, posing concerns as to who the original author of a text is. To address such concerns, we introduce DeB-Ang: the utilisation of a custom DeBERTa model with angular loss and contrastive loss functions for effective class separation in neural text classification tasks. We expand the application of this model on binary machine-generated text detection and multi-class neural authorship attribution. We demonstrate improved performance on many benchmark datasets whereby the accuracy for machine-generated text detection was increased by as much as 38.04% across all datasets.</abstract>
<identifier type="citekey">zahid-etal-2024-multi</identifier>
<identifier type="doi">10.18653/v1/2024.findings-emnlp.421</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.421/</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>7189</start>
<end>7202</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Loss Fusion: Angular and Contrastive Integration for Machine-Generated Text Detection
%A Zahid, Iqra
%A Chang, Yue
%A Madusanka, Tharindu
%A Sun, Youcheng
%A Batista-Navarro, Riza
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F zahid-etal-2024-multi
%X Modern natural language generation (NLG) systems have led to the development of synthetic human-like open-ended texts, posing concerns as to who the original author of a text is. To address such concerns, we introduce DeB-Ang: the utilisation of a custom DeBERTa model with angular loss and contrastive loss functions for effective class separation in neural text classification tasks. We expand the application of this model on binary machine-generated text detection and multi-class neural authorship attribution. We demonstrate improved performance on many benchmark datasets whereby the accuracy for machine-generated text detection was increased by as much as 38.04% across all datasets.
%R 10.18653/v1/2024.findings-emnlp.421
%U https://aclanthology.org/2024.findings-emnlp.421/
%U https://doi.org/10.18653/v1/2024.findings-emnlp.421
%P 7189-7202
Markdown (Informal)
[Multi-Loss Fusion: Angular and Contrastive Integration for Machine-Generated Text Detection](https://aclanthology.org/2024.findings-emnlp.421/) (Zahid et al., Findings 2024)
ACL