@inproceedings{wang-etal-2024-phonetic,
title = "Phonetic and Lexical Discovery of Canine Vocalization",
author = "Wang, Theron S. and
Li, Xingyuan and
Zhang, Chunhao and
Wu, Mengyue and
Zhu, Kenny Q.",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-emnlp.816",
doi = "10.18653/v1/2024.findings-emnlp.816",
pages = "13972--13983",
abstract = "This paper attempts to discover communication patterns automatically within dog vocalizations in a data-driven approach, which breaks the barrier previous approaches that rely on human prior knowledge on limited data. We present a self-supervised approach with HuBERT, enabling the accurate classification of phones, and an adaptive grammar induction method that identifies phone sequence patterns that suggest a preliminary vocabulary within dog vocalizations. Our results show that a subset of this vocabulary has substantial causality relations with certain canine activities, suggesting signs of stable semantics associated with these {``}words{''}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2024-phonetic">
<titleInfo>
<title>Phonetic and Lexical Discovery of Canine Vocalization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Theron</namePart>
<namePart type="given">S</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingyuan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chunhao</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mengyue</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenny</namePart>
<namePart type="given">Q</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper attempts to discover communication patterns automatically within dog vocalizations in a data-driven approach, which breaks the barrier previous approaches that rely on human prior knowledge on limited data. We present a self-supervised approach with HuBERT, enabling the accurate classification of phones, and an adaptive grammar induction method that identifies phone sequence patterns that suggest a preliminary vocabulary within dog vocalizations. Our results show that a subset of this vocabulary has substantial causality relations with certain canine activities, suggesting signs of stable semantics associated with these “words”.</abstract>
<identifier type="citekey">wang-etal-2024-phonetic</identifier>
<identifier type="doi">10.18653/v1/2024.findings-emnlp.816</identifier>
<location>
<url>https://aclanthology.org/2024.findings-emnlp.816</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>13972</start>
<end>13983</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Phonetic and Lexical Discovery of Canine Vocalization
%A Wang, Theron S.
%A Li, Xingyuan
%A Zhang, Chunhao
%A Wu, Mengyue
%A Zhu, Kenny Q.
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Findings of the Association for Computational Linguistics: EMNLP 2024
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F wang-etal-2024-phonetic
%X This paper attempts to discover communication patterns automatically within dog vocalizations in a data-driven approach, which breaks the barrier previous approaches that rely on human prior knowledge on limited data. We present a self-supervised approach with HuBERT, enabling the accurate classification of phones, and an adaptive grammar induction method that identifies phone sequence patterns that suggest a preliminary vocabulary within dog vocalizations. Our results show that a subset of this vocabulary has substantial causality relations with certain canine activities, suggesting signs of stable semantics associated with these “words”.
%R 10.18653/v1/2024.findings-emnlp.816
%U https://aclanthology.org/2024.findings-emnlp.816
%U https://doi.org/10.18653/v1/2024.findings-emnlp.816
%P 13972-13983
Markdown (Informal)
[Phonetic and Lexical Discovery of Canine Vocalization](https://aclanthology.org/2024.findings-emnlp.816) (Wang et al., Findings 2024)
ACL
- Theron S. Wang, Xingyuan Li, Chunhao Zhang, Mengyue Wu, and Kenny Q. Zhu. 2024. Phonetic and Lexical Discovery of Canine Vocalization. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages 13972–13983, Miami, Florida, USA. Association for Computational Linguistics.