@inproceedings{shin-etal-2024-x,
title = "{X}-{LL}a{VA}: Optimizing Bilingual Large Vision-Language Alignment",
author = "Shin, DongJae and
Lim, HyeonSeok and
Won, Inho and
Choi, ChangSu and
Kim, Minjun and
Song, SeungWoo and
Yoo, HanGyeol and
Kim, SangMin and
Lim, KyungTae",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.158/",
doi = "10.18653/v1/2024.findings-naacl.158",
pages = "2463--2473",
abstract = "The impressive development of large language models (LLMs) is expanding into the realm of large multimodal models (LMMs), which incorporate multiple types of data beyond text. However, the nature of multimodal models leads to significant expenses in the creation of training data. Furthermore, constructing multilingual data for LMMs presents its own set of challenges due to language diversity and complexity. Therefore, in this study, we propose two cost-effective methods to solve this problem: (1) vocabulary expansion and pretraining of multilingual LLM for specific languages, and (2) automatic and elaborate construction of multimodal datasets using GPT4-V. Based on these methods, we constructed a 91K English-Korean-Chinese multilingual, multimodal training dataset. Additionally, we developed a bilingual multimodal model that exhibits excellent performance in both Korean and English, surpassing existing approaches."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shin-etal-2024-x">
<titleInfo>
<title>X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">DongJae</namePart>
<namePart type="family">Shin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">HyeonSeok</namePart>
<namePart type="family">Lim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Inho</namePart>
<namePart type="family">Won</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">ChangSu</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minjun</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">SeungWoo</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">HanGyeol</namePart>
<namePart type="family">Yoo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">SangMin</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">KyungTae</namePart>
<namePart type="family">Lim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The impressive development of large language models (LLMs) is expanding into the realm of large multimodal models (LMMs), which incorporate multiple types of data beyond text. However, the nature of multimodal models leads to significant expenses in the creation of training data. Furthermore, constructing multilingual data for LMMs presents its own set of challenges due to language diversity and complexity. Therefore, in this study, we propose two cost-effective methods to solve this problem: (1) vocabulary expansion and pretraining of multilingual LLM for specific languages, and (2) automatic and elaborate construction of multimodal datasets using GPT4-V. Based on these methods, we constructed a 91K English-Korean-Chinese multilingual, multimodal training dataset. Additionally, we developed a bilingual multimodal model that exhibits excellent performance in both Korean and English, surpassing existing approaches.</abstract>
<identifier type="citekey">shin-etal-2024-x</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.158</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.158/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>2463</start>
<end>2473</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment
%A Shin, DongJae
%A Lim, HyeonSeok
%A Won, Inho
%A Choi, ChangSu
%A Kim, Minjun
%A Song, SeungWoo
%A Yoo, HanGyeol
%A Kim, SangMin
%A Lim, KyungTae
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F shin-etal-2024-x
%X The impressive development of large language models (LLMs) is expanding into the realm of large multimodal models (LMMs), which incorporate multiple types of data beyond text. However, the nature of multimodal models leads to significant expenses in the creation of training data. Furthermore, constructing multilingual data for LMMs presents its own set of challenges due to language diversity and complexity. Therefore, in this study, we propose two cost-effective methods to solve this problem: (1) vocabulary expansion and pretraining of multilingual LLM for specific languages, and (2) automatic and elaborate construction of multimodal datasets using GPT4-V. Based on these methods, we constructed a 91K English-Korean-Chinese multilingual, multimodal training dataset. Additionally, we developed a bilingual multimodal model that exhibits excellent performance in both Korean and English, surpassing existing approaches.
%R 10.18653/v1/2024.findings-naacl.158
%U https://aclanthology.org/2024.findings-naacl.158/
%U https://doi.org/10.18653/v1/2024.findings-naacl.158
%P 2463-2473
Markdown (Informal)
[X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment](https://aclanthology.org/2024.findings-naacl.158/) (Shin et al., Findings 2024)
ACL
- DongJae Shin, HyeonSeok Lim, Inho Won, ChangSu Choi, Minjun Kim, SeungWoo Song, HanGyeol Yoo, SangMin Kim, and KyungTae Lim. 2024. X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment. In Findings of the Association for Computational Linguistics: NAACL 2024, pages 2463–2473, Mexico City, Mexico. Association for Computational Linguistics.