An End-to-End Submodular Framework for Data-Efficient In-Context Learning

Lilly Kumari, Shengjie Wang, Arnav Das, Tianyi Zhou, Jeff Bilmes


Anthology ID:
2024.findings-naacl.209
Volume:
Findings of the Association for Computational Linguistics: NAACL 2024
Month:
June
Year:
2024
Address:
Mexico City, Mexico
Editors:
Kevin Duh, Helena Gomez, Steven Bethard
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
3293–3308
Language:
URL:
https://aclanthology.org/2024.findings-naacl.209/
DOI:
10.18653/v1/2024.findings-naacl.209
Bibkey:
Cite (ACL):
Lilly Kumari, Shengjie Wang, Arnav Das, Tianyi Zhou, and Jeff Bilmes. 2024. An End-to-End Submodular Framework for Data-Efficient In-Context Learning. In Findings of the Association for Computational Linguistics: NAACL 2024, pages 3293–3308, Mexico City, Mexico. Association for Computational Linguistics.
Cite (Informal):
An End-to-End Submodular Framework for Data-Efficient In-Context Learning (Kumari et al., Findings 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.findings-naacl.209.pdf
Video:
 https://aclanthology.org/2024.findings-naacl.209.mp4