@inproceedings{li-etal-2024-transformer,
title = "A Transformer with Stack Attention",
author = "Li, Jiaoda and
White, Jennifer and
Sachan, Mrinmaya and
Cotterell, Ryan",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.269/",
doi = "10.18653/v1/2024.findings-naacl.269",
pages = "4318--4335",
abstract = "Natural languages are believed to be (mildly) context-sensitive. Despite underpinning remarkably capable large language models, transformers are unable to model many context-free language tasks. In an attempt to address this limitation in the modeling power of transformer-based language models, we propose augmenting them with a differentiable, stack-based attention mechanism. Our stack-basedattention mechanism can be incorporated into any transformer-based language model and adds a level of interpretability to the model. We show that the addition of our stack-based attention mechanism enables the transformer to model some, but not all, deterministic context-freelanguages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2024-transformer">
<titleInfo>
<title>A Transformer with Stack Attention</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiaoda</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jennifer</namePart>
<namePart type="family">White</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mrinmaya</namePart>
<namePart type="family">Sachan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">Cotterell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Natural languages are believed to be (mildly) context-sensitive. Despite underpinning remarkably capable large language models, transformers are unable to model many context-free language tasks. In an attempt to address this limitation in the modeling power of transformer-based language models, we propose augmenting them with a differentiable, stack-based attention mechanism. Our stack-basedattention mechanism can be incorporated into any transformer-based language model and adds a level of interpretability to the model. We show that the addition of our stack-based attention mechanism enables the transformer to model some, but not all, deterministic context-freelanguages.</abstract>
<identifier type="citekey">li-etal-2024-transformer</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.269</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.269/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>4318</start>
<end>4335</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Transformer with Stack Attention
%A Li, Jiaoda
%A White, Jennifer
%A Sachan, Mrinmaya
%A Cotterell, Ryan
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F li-etal-2024-transformer
%X Natural languages are believed to be (mildly) context-sensitive. Despite underpinning remarkably capable large language models, transformers are unable to model many context-free language tasks. In an attempt to address this limitation in the modeling power of transformer-based language models, we propose augmenting them with a differentiable, stack-based attention mechanism. Our stack-basedattention mechanism can be incorporated into any transformer-based language model and adds a level of interpretability to the model. We show that the addition of our stack-based attention mechanism enables the transformer to model some, but not all, deterministic context-freelanguages.
%R 10.18653/v1/2024.findings-naacl.269
%U https://aclanthology.org/2024.findings-naacl.269/
%U https://doi.org/10.18653/v1/2024.findings-naacl.269
%P 4318-4335
Markdown (Informal)
[A Transformer with Stack Attention](https://aclanthology.org/2024.findings-naacl.269/) (Li et al., Findings 2024)
ACL
- Jiaoda Li, Jennifer White, Mrinmaya Sachan, and Ryan Cotterell. 2024. A Transformer with Stack Attention. In Findings of the Association for Computational Linguistics: NAACL 2024, pages 4318–4335, Mexico City, Mexico. Association for Computational Linguistics.