@inproceedings{wang-huang-2024-targeted,
title = "Targeted Augmentation for Low-Resource Event Extraction",
author = "Wang, Sijia and
Huang, Lifu",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2024",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-naacl.275/",
doi = "10.18653/v1/2024.findings-naacl.275",
pages = "4414--4428",
abstract = "Addressing the challenge of low-resource information extraction remains an ongoing issue due to the inherent information scarcity within limited training examples. Existing data augmentation methods, considered potential solutions, struggle to strike a balance between weak augmentation (e.g., synonym augmentation) and drastic augmentation (e.g., conditional generation without proper guidance). This paper introduces a novel paradigm that employs targeted augmentation and back validation to produce augmented examples with enhanced diversity, polarity, accuracy, and coherence. Extensive experimental results demonstrate the effectiveness of the proposed paradigm. Furthermore, identified limitations are discussed, shedding light on areas for future improvement."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-huang-2024-targeted">
<titleInfo>
<title>Targeted Augmentation for Low-Resource Event Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sijia</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lifu</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Addressing the challenge of low-resource information extraction remains an ongoing issue due to the inherent information scarcity within limited training examples. Existing data augmentation methods, considered potential solutions, struggle to strike a balance between weak augmentation (e.g., synonym augmentation) and drastic augmentation (e.g., conditional generation without proper guidance). This paper introduces a novel paradigm that employs targeted augmentation and back validation to produce augmented examples with enhanced diversity, polarity, accuracy, and coherence. Extensive experimental results demonstrate the effectiveness of the proposed paradigm. Furthermore, identified limitations are discussed, shedding light on areas for future improvement.</abstract>
<identifier type="citekey">wang-huang-2024-targeted</identifier>
<identifier type="doi">10.18653/v1/2024.findings-naacl.275</identifier>
<location>
<url>https://aclanthology.org/2024.findings-naacl.275/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>4414</start>
<end>4428</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Targeted Augmentation for Low-Resource Event Extraction
%A Wang, Sijia
%A Huang, Lifu
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Findings of the Association for Computational Linguistics: NAACL 2024
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F wang-huang-2024-targeted
%X Addressing the challenge of low-resource information extraction remains an ongoing issue due to the inherent information scarcity within limited training examples. Existing data augmentation methods, considered potential solutions, struggle to strike a balance between weak augmentation (e.g., synonym augmentation) and drastic augmentation (e.g., conditional generation without proper guidance). This paper introduces a novel paradigm that employs targeted augmentation and back validation to produce augmented examples with enhanced diversity, polarity, accuracy, and coherence. Extensive experimental results demonstrate the effectiveness of the proposed paradigm. Furthermore, identified limitations are discussed, shedding light on areas for future improvement.
%R 10.18653/v1/2024.findings-naacl.275
%U https://aclanthology.org/2024.findings-naacl.275/
%U https://doi.org/10.18653/v1/2024.findings-naacl.275
%P 4414-4428
Markdown (Informal)
[Targeted Augmentation for Low-Resource Event Extraction](https://aclanthology.org/2024.findings-naacl.275/) (Wang & Huang, Findings 2024)
ACL