@inproceedings{dakle-etal-2024-jetsons,
title = "Jetsons at {F}in{NLP} 2024: Towards Understanding the {ESG} Impact of a News Article Using Transformer-based Models",
author = "Dakle, Parag Pravin and
Gon, Alolika and
Zha, Sihan and
Wang, Liang and
Rallabandi, Sai Krishna and
Raghavan, Preethi",
editor = "Chen, Chung-Chi and
Liu, Xiaomo and
Hahn, Udo and
Nourbakhsh, Armineh and
Ma, Zhiqiang and
Smiley, Charese and
Hoste, Veronique and
Das, Sanjiv Ranjan and
Li, Manling and
Ghassemi, Mohammad and
Huang, Hen-Hsen and
Takamura, Hiroya and
Chen, Hsin-Hsi",
booktitle = "Proceedings of the Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.finnlp-1.27",
pages = "254--260",
abstract = "In this paper, we describe the different approaches explored by the Jetsons team for the Multi-Lingual ESG Impact Duration Inference (ML-ESG-3) shared task. The shared task focuses on predicting the duration and type of the ESG impact of a news article. The shared task dataset consists of 2,059 news titles and articles in English, French, Korean, and Japanese languages. For the impact duration classification task, we fine-tuned XLM-RoBERTa with a custom fine-tuning strategy and using self-training and DeBERTa-v3 using only English translations. These models individually ranked first on the leaderboard for Korean and Japanese and in an ensemble for the English language, respectively. For the impact type classification task, our XLM-RoBERTa model fine-tuned using a custom fine-tuning strategy ranked first for the English language.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dakle-etal-2024-jetsons">
<titleInfo>
<title>Jetsons at FinNLP 2024: Towards Understanding the ESG Impact of a News Article Using Transformer-based Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Parag</namePart>
<namePart type="given">Pravin</namePart>
<namePart type="family">Dakle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alolika</namePart>
<namePart type="family">Gon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sihan</namePart>
<namePart type="family">Zha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sai</namePart>
<namePart type="given">Krishna</namePart>
<namePart type="family">Rallabandi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preethi</namePart>
<namePart type="family">Raghavan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chung-Chi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaomo</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Udo</namePart>
<namePart type="family">Hahn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Armineh</namePart>
<namePart type="family">Nourbakhsh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiqiang</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Charese</namePart>
<namePart type="family">Smiley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanjiv</namePart>
<namePart type="given">Ranjan</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manling</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="family">Ghassemi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hen-Hsen</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe the different approaches explored by the Jetsons team for the Multi-Lingual ESG Impact Duration Inference (ML-ESG-3) shared task. The shared task focuses on predicting the duration and type of the ESG impact of a news article. The shared task dataset consists of 2,059 news titles and articles in English, French, Korean, and Japanese languages. For the impact duration classification task, we fine-tuned XLM-RoBERTa with a custom fine-tuning strategy and using self-training and DeBERTa-v3 using only English translations. These models individually ranked first on the leaderboard for Korean and Japanese and in an ensemble for the English language, respectively. For the impact type classification task, our XLM-RoBERTa model fine-tuned using a custom fine-tuning strategy ranked first for the English language.</abstract>
<identifier type="citekey">dakle-etal-2024-jetsons</identifier>
<location>
<url>https://aclanthology.org/2024.finnlp-1.27</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>254</start>
<end>260</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Jetsons at FinNLP 2024: Towards Understanding the ESG Impact of a News Article Using Transformer-based Models
%A Dakle, Parag Pravin
%A Gon, Alolika
%A Zha, Sihan
%A Wang, Liang
%A Rallabandi, Sai Krishna
%A Raghavan, Preethi
%Y Chen, Chung-Chi
%Y Liu, Xiaomo
%Y Hahn, Udo
%Y Nourbakhsh, Armineh
%Y Ma, Zhiqiang
%Y Smiley, Charese
%Y Hoste, Veronique
%Y Das, Sanjiv Ranjan
%Y Li, Manling
%Y Ghassemi, Mohammad
%Y Huang, Hen-Hsen
%Y Takamura, Hiroya
%Y Chen, Hsin-Hsi
%S Proceedings of the Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing
%D 2024
%8 May
%I Association for Computational Linguistics
%C Torino, Italia
%F dakle-etal-2024-jetsons
%X In this paper, we describe the different approaches explored by the Jetsons team for the Multi-Lingual ESG Impact Duration Inference (ML-ESG-3) shared task. The shared task focuses on predicting the duration and type of the ESG impact of a news article. The shared task dataset consists of 2,059 news titles and articles in English, French, Korean, and Japanese languages. For the impact duration classification task, we fine-tuned XLM-RoBERTa with a custom fine-tuning strategy and using self-training and DeBERTa-v3 using only English translations. These models individually ranked first on the leaderboard for Korean and Japanese and in an ensemble for the English language, respectively. For the impact type classification task, our XLM-RoBERTa model fine-tuned using a custom fine-tuning strategy ranked first for the English language.
%U https://aclanthology.org/2024.finnlp-1.27
%P 254-260
Markdown (Informal)
[Jetsons at FinNLP 2024: Towards Understanding the ESG Impact of a News Article Using Transformer-based Models](https://aclanthology.org/2024.finnlp-1.27) (Dakle et al., FinNLP 2024)
ACL
- Parag Pravin Dakle, Alolika Gon, Sihan Zha, Liang Wang, Sai Krishna Rallabandi, and Preethi Raghavan. 2024. Jetsons at FinNLP 2024: Towards Understanding the ESG Impact of a News Article Using Transformer-based Models. In Proceedings of the Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing, pages 254–260, Torino, Italia. Association for Computational Linguistics.