@inproceedings{nigam-etal-2024-interactive,
title = "An Interactive Co-Pilot for Accelerated Research Ideation",
author = "Nigam, Harshit and
Patwardhan, Manasi and
Vig, Lovekesh and
Shroff, Gautam",
editor = "Blodgett, Su Lin and
Cercas Curry, Amanda and
Dev, Sunipa and
Madaio, Michael and
Nenkova, Ani and
Yang, Diyi and
Xiao, Ziang",
booktitle = "Proceedings of the Third Workshop on Bridging Human--Computer Interaction and Natural Language Processing",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.hcinlp-1.6/",
doi = "10.18653/v1/2024.hcinlp-1.6",
pages = "60--73",
abstract = "In the realm of research support tools, there exists a notable void in resources tailored specifically for aiding researchers during the crucial ideation phase of the research life-cycle. We address this gap by introducing {\textquoteleft}Acceleron', a {\textquoteleft}Co-Pilot' for researchers, designed specifically to accelerate the ideation phase of the research life-cycle. Leveraging the reasoning and domain-specific skills of Large Language Models (LLMs) within an agent-based architecture with distinct personas, Acceleron aids researchers through the formulation of a comprehensive research proposals. It emulates the ideation process, engaging researchers in an interactive fashion to validate the novelty of the proposal and generate plausible set-of hypotheses. Notably, it addresses challenges inherent in LLMs, such as hallucinations, implements a two-stage aspect-based retrieval to manage precision-recall trade-offs, and tackles issues of unanswerability. Our observations and end-user evaluations illustrate the efficacy of Acceleron as an enhancer of researcher`s productivity."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nigam-etal-2024-interactive">
<titleInfo>
<title>An Interactive Co-Pilot for Accelerated Research Ideation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Harshit</namePart>
<namePart type="family">Nigam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manasi</namePart>
<namePart type="family">Patwardhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lovekesh</namePart>
<namePart type="family">Vig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gautam</namePart>
<namePart type="family">Shroff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Bridging Human–Computer Interaction and Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Su</namePart>
<namePart type="given">Lin</namePart>
<namePart type="family">Blodgett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="family">Cercas Curry</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sunipa</namePart>
<namePart type="family">Dev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Madaio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ani</namePart>
<namePart type="family">Nenkova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diyi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ziang</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the realm of research support tools, there exists a notable void in resources tailored specifically for aiding researchers during the crucial ideation phase of the research life-cycle. We address this gap by introducing ‘Acceleron’, a ‘Co-Pilot’ for researchers, designed specifically to accelerate the ideation phase of the research life-cycle. Leveraging the reasoning and domain-specific skills of Large Language Models (LLMs) within an agent-based architecture with distinct personas, Acceleron aids researchers through the formulation of a comprehensive research proposals. It emulates the ideation process, engaging researchers in an interactive fashion to validate the novelty of the proposal and generate plausible set-of hypotheses. Notably, it addresses challenges inherent in LLMs, such as hallucinations, implements a two-stage aspect-based retrieval to manage precision-recall trade-offs, and tackles issues of unanswerability. Our observations and end-user evaluations illustrate the efficacy of Acceleron as an enhancer of researcher‘s productivity.</abstract>
<identifier type="citekey">nigam-etal-2024-interactive</identifier>
<identifier type="doi">10.18653/v1/2024.hcinlp-1.6</identifier>
<location>
<url>https://aclanthology.org/2024.hcinlp-1.6/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>60</start>
<end>73</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Interactive Co-Pilot for Accelerated Research Ideation
%A Nigam, Harshit
%A Patwardhan, Manasi
%A Vig, Lovekesh
%A Shroff, Gautam
%Y Blodgett, Su Lin
%Y Cercas Curry, Amanda
%Y Dev, Sunipa
%Y Madaio, Michael
%Y Nenkova, Ani
%Y Yang, Diyi
%Y Xiao, Ziang
%S Proceedings of the Third Workshop on Bridging Human–Computer Interaction and Natural Language Processing
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F nigam-etal-2024-interactive
%X In the realm of research support tools, there exists a notable void in resources tailored specifically for aiding researchers during the crucial ideation phase of the research life-cycle. We address this gap by introducing ‘Acceleron’, a ‘Co-Pilot’ for researchers, designed specifically to accelerate the ideation phase of the research life-cycle. Leveraging the reasoning and domain-specific skills of Large Language Models (LLMs) within an agent-based architecture with distinct personas, Acceleron aids researchers through the formulation of a comprehensive research proposals. It emulates the ideation process, engaging researchers in an interactive fashion to validate the novelty of the proposal and generate plausible set-of hypotheses. Notably, it addresses challenges inherent in LLMs, such as hallucinations, implements a two-stage aspect-based retrieval to manage precision-recall trade-offs, and tackles issues of unanswerability. Our observations and end-user evaluations illustrate the efficacy of Acceleron as an enhancer of researcher‘s productivity.
%R 10.18653/v1/2024.hcinlp-1.6
%U https://aclanthology.org/2024.hcinlp-1.6/
%U https://doi.org/10.18653/v1/2024.hcinlp-1.6
%P 60-73
Markdown (Informal)
[An Interactive Co-Pilot for Accelerated Research Ideation](https://aclanthology.org/2024.hcinlp-1.6/) (Nigam et al., HCINLP 2024)
ACL
- Harshit Nigam, Manasi Patwardhan, Lovekesh Vig, and Gautam Shroff. 2024. An Interactive Co-Pilot for Accelerated Research Ideation. In Proceedings of the Third Workshop on Bridging Human--Computer Interaction and Natural Language Processing, pages 60–73, Mexico City, Mexico. Association for Computational Linguistics.