@inproceedings{wang-etal-2024-llmcheckup,
title = "{LLMC}heckup: Conversational Examination of Large Language Models via Interpretability Tools and Self-Explanations",
author = {Wang, Qianli and
Anikina, Tatiana and
Feldhus, Nils and
Genabith, Josef and
Hennig, Leonhard and
M{\"o}ller, Sebastian},
editor = "Blodgett, Su Lin and
Curry, Amanda Cercas and
Dev, Sunipa and
Madaio, Michael and
Nenkova, Ani and
Yang, Diyi and
Xiao, Ziang",
booktitle = "Proceedings of the Third Workshop on Bridging Human--Computer Interaction and Natural Language Processing",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.hcinlp-1.9",
doi = "10.18653/v1/2024.hcinlp-1.9",
pages = "89--104",
abstract = "Interpretability tools that offer explanations in the form of a dialogue have demonstrated their efficacy in enhancing users{'} understanding (Slack et al., 2023; Shen et al., 2023), as one-off explanations may fall short in providing sufficient information to the user. Current solutions for dialogue-based explanations, however, often require external tools and modules and are not easily transferable to tasks they were not designed for. With $\texttt{LLMCheckup}$, we present an easily accessible tool that allows users to chat with any state-of-the-art large language model (LLM) about its behavior. We enable LLMs to generate explanations and perform user intent recognition without fine-tuning, by connecting them with a broad spectrum of Explainable AI (XAI) methods, including white-box explainability tools such as feature attributions, and self-explanations (e.g., for rationale generation). LLM-based (self-)explanations are presented as an interactive dialogue that supports follow-up questions and generates suggestions. $\texttt{LLMCheckup}$ provides tutorials for operations available in the system, catering to individuals with varying levels of expertise in XAI and supporting multiple input modalities. We introduce a new parsing strategy that substantially enhances the user intent recognition accuracy of the LLM. Finally, we showcase $\texttt{LLMCheckup}$ for the tasks of fact checking and commonsense question answering. Our code repository: https://github.com/DFKI-NLP/LLMCheckup",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2024-llmcheckup">
<titleInfo>
<title>LLMCheckup: Conversational Examination of Large Language Models via Interpretability Tools and Self-Explanations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qianli</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatiana</namePart>
<namePart type="family">Anikina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nils</namePart>
<namePart type="family">Feldhus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Josef</namePart>
<namePart type="family">Genabith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leonhard</namePart>
<namePart type="family">Hennig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Möller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Bridging Human–Computer Interaction and Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Su</namePart>
<namePart type="given">Lin</namePart>
<namePart type="family">Blodgett</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amanda</namePart>
<namePart type="given">Cercas</namePart>
<namePart type="family">Curry</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sunipa</namePart>
<namePart type="family">Dev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Madaio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ani</namePart>
<namePart type="family">Nenkova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diyi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ziang</namePart>
<namePart type="family">Xiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Interpretability tools that offer explanations in the form of a dialogue have demonstrated their efficacy in enhancing users’ understanding (Slack et al., 2023; Shen et al., 2023), as one-off explanations may fall short in providing sufficient information to the user. Current solutions for dialogue-based explanations, however, often require external tools and modules and are not easily transferable to tasks they were not designed for. With LLMCheckup, we present an easily accessible tool that allows users to chat with any state-of-the-art large language model (LLM) about its behavior. We enable LLMs to generate explanations and perform user intent recognition without fine-tuning, by connecting them with a broad spectrum of Explainable AI (XAI) methods, including white-box explainability tools such as feature attributions, and self-explanations (e.g., for rationale generation). LLM-based (self-)explanations are presented as an interactive dialogue that supports follow-up questions and generates suggestions. LLMCheckup provides tutorials for operations available in the system, catering to individuals with varying levels of expertise in XAI and supporting multiple input modalities. We introduce a new parsing strategy that substantially enhances the user intent recognition accuracy of the LLM. Finally, we showcase LLMCheckup for the tasks of fact checking and commonsense question answering. Our code repository: https://github.com/DFKI-NLP/LLMCheckup</abstract>
<identifier type="citekey">wang-etal-2024-llmcheckup</identifier>
<identifier type="doi">10.18653/v1/2024.hcinlp-1.9</identifier>
<location>
<url>https://aclanthology.org/2024.hcinlp-1.9</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>89</start>
<end>104</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LLMCheckup: Conversational Examination of Large Language Models via Interpretability Tools and Self-Explanations
%A Wang, Qianli
%A Anikina, Tatiana
%A Feldhus, Nils
%A Genabith, Josef
%A Hennig, Leonhard
%A Möller, Sebastian
%Y Blodgett, Su Lin
%Y Curry, Amanda Cercas
%Y Dev, Sunipa
%Y Madaio, Michael
%Y Nenkova, Ani
%Y Yang, Diyi
%Y Xiao, Ziang
%S Proceedings of the Third Workshop on Bridging Human–Computer Interaction and Natural Language Processing
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F wang-etal-2024-llmcheckup
%X Interpretability tools that offer explanations in the form of a dialogue have demonstrated their efficacy in enhancing users’ understanding (Slack et al., 2023; Shen et al., 2023), as one-off explanations may fall short in providing sufficient information to the user. Current solutions for dialogue-based explanations, however, often require external tools and modules and are not easily transferable to tasks they were not designed for. With LLMCheckup, we present an easily accessible tool that allows users to chat with any state-of-the-art large language model (LLM) about its behavior. We enable LLMs to generate explanations and perform user intent recognition without fine-tuning, by connecting them with a broad spectrum of Explainable AI (XAI) methods, including white-box explainability tools such as feature attributions, and self-explanations (e.g., for rationale generation). LLM-based (self-)explanations are presented as an interactive dialogue that supports follow-up questions and generates suggestions. LLMCheckup provides tutorials for operations available in the system, catering to individuals with varying levels of expertise in XAI and supporting multiple input modalities. We introduce a new parsing strategy that substantially enhances the user intent recognition accuracy of the LLM. Finally, we showcase LLMCheckup for the tasks of fact checking and commonsense question answering. Our code repository: https://github.com/DFKI-NLP/LLMCheckup
%R 10.18653/v1/2024.hcinlp-1.9
%U https://aclanthology.org/2024.hcinlp-1.9
%U https://doi.org/10.18653/v1/2024.hcinlp-1.9
%P 89-104
Markdown (Informal)
[LLMCheckup: Conversational Examination of Large Language Models via Interpretability Tools and Self-Explanations](https://aclanthology.org/2024.hcinlp-1.9) (Wang et al., HCINLP-WS 2024)
ACL