@inproceedings{t-k-etal-2024-monolingual,
title = "Monolingual text summarization for {I}ndic Languages using {LLM}s",
author = "T K, Jothir Adithya and
S, Nithish Kumar and
J, Felicia Lilian and
S, Mahalakshmi",
editor = "Lalitha Devi, Sobha and
Arora, Karunesh",
booktitle = "Proceedings of the 21st International Conference on Natural Language Processing (ICON)",
month = dec,
year = "2024",
address = "AU-KBC Research Centre, Chennai, India",
publisher = "NLP Association of India (NLPAI)",
url = "https://aclanthology.org/2024.icon-1.11/",
pages = "94--101",
abstract = "We have analyzed the growth of advanced text summarization method leveraging LLM for Indic language. Text summarization involves transforming a longer text information into a more concise version, ensuring that the most prominent information and key meanings are maintained. Our goal is to produce concise and accurate summaries from longer texts, focusing on maintaining detailed information and coherence. We utilize NLP techniques for text cleaning, keyword extraction and summarization, along with performance evaluation metrics such as ROUGE score, BLEU score and BERT Score. The results demonstrate an incremental improvement in the quality of generated summaries, with a particular emphasis on enhancing informativeness while minimizing redundancy. This research work also highlights the importance of tuning parameters and leveraging advanced models for producing high quality summaries in diverse domains for Indic Language."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="t-k-etal-2024-monolingual">
<titleInfo>
<title>Monolingual text summarization for Indic Languages using LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jothir</namePart>
<namePart type="given">Adithya</namePart>
<namePart type="family">T K</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nithish</namePart>
<namePart type="given">Kumar</namePart>
<namePart type="family">S</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felicia</namePart>
<namePart type="given">Lilian</namePart>
<namePart type="family">J</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahalakshmi</namePart>
<namePart type="family">S</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st International Conference on Natural Language Processing (ICON)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sobha</namePart>
<namePart type="family">Lalitha Devi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karunesh</namePart>
<namePart type="family">Arora</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>NLP Association of India (NLPAI)</publisher>
<place>
<placeTerm type="text">AU-KBC Research Centre, Chennai, India</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We have analyzed the growth of advanced text summarization method leveraging LLM for Indic language. Text summarization involves transforming a longer text information into a more concise version, ensuring that the most prominent information and key meanings are maintained. Our goal is to produce concise and accurate summaries from longer texts, focusing on maintaining detailed information and coherence. We utilize NLP techniques for text cleaning, keyword extraction and summarization, along with performance evaluation metrics such as ROUGE score, BLEU score and BERT Score. The results demonstrate an incremental improvement in the quality of generated summaries, with a particular emphasis on enhancing informativeness while minimizing redundancy. This research work also highlights the importance of tuning parameters and leveraging advanced models for producing high quality summaries in diverse domains for Indic Language.</abstract>
<identifier type="citekey">t-k-etal-2024-monolingual</identifier>
<location>
<url>https://aclanthology.org/2024.icon-1.11/</url>
</location>
<part>
<date>2024-12</date>
<extent unit="page">
<start>94</start>
<end>101</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Monolingual text summarization for Indic Languages using LLMs
%A T K, Jothir Adithya
%A S, Nithish Kumar
%A J, Felicia Lilian
%A S, Mahalakshmi
%Y Lalitha Devi, Sobha
%Y Arora, Karunesh
%S Proceedings of the 21st International Conference on Natural Language Processing (ICON)
%D 2024
%8 December
%I NLP Association of India (NLPAI)
%C AU-KBC Research Centre, Chennai, India
%F t-k-etal-2024-monolingual
%X We have analyzed the growth of advanced text summarization method leveraging LLM for Indic language. Text summarization involves transforming a longer text information into a more concise version, ensuring that the most prominent information and key meanings are maintained. Our goal is to produce concise and accurate summaries from longer texts, focusing on maintaining detailed information and coherence. We utilize NLP techniques for text cleaning, keyword extraction and summarization, along with performance evaluation metrics such as ROUGE score, BLEU score and BERT Score. The results demonstrate an incremental improvement in the quality of generated summaries, with a particular emphasis on enhancing informativeness while minimizing redundancy. This research work also highlights the importance of tuning parameters and leveraging advanced models for producing high quality summaries in diverse domains for Indic Language.
%U https://aclanthology.org/2024.icon-1.11/
%P 94-101
Markdown (Informal)
[Monolingual text summarization for Indic Languages using LLMs](https://aclanthology.org/2024.icon-1.11/) (T K et al., ICON 2024)
ACL
- Jothir Adithya T K, Nithish Kumar S, Felicia Lilian J, and Mahalakshmi S. 2024. Monolingual text summarization for Indic Languages using LLMs. In Proceedings of the 21st International Conference on Natural Language Processing (ICON), pages 94–101, AU-KBC Research Centre, Chennai, India. NLP Association of India (NLPAI).