@inproceedings{solera-monforte-etal-2024-mate-simulating,
title = "Be My Mate: Simulating Virtual Students for collaboration using Large Language Models",
author = "Solera-Monforte, Sergi and
Arnau-Gonz{\'a}lez, Pablo and
Arevalillo-Herr{\'a}ez, Miguel",
editor = "Mahamood, Saad and
Minh, Nguyen Le and
Ippolito, Daphne",
booktitle = "Proceedings of the 17th International Natural Language Generation Conference: System Demonstrations",
month = sep,
year = "2024",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.inlg-demos.1",
pages = "1--3",
abstract = "Advancements in machine learning, particularly Large Language Models (LLMs), offer new opportunities for enhancing education through personalized assistance. We introduce {``}Be My Mate,{''} an agent that leverages LLMs to simulate virtual peer students in online collaborative education. The system includes a subscription module for real-time updates and a conversational module for generating supportive interactions. Key challenges include creating temporally realistic interactions and credible error generation. The initial demonstration shows promise in enhancing student engagement and learning outcomes.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="solera-monforte-etal-2024-mate-simulating">
<titleInfo>
<title>Be My Mate: Simulating Virtual Students for collaboration using Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sergi</namePart>
<namePart type="family">Solera-Monforte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pablo</namePart>
<namePart type="family">Arnau-González</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miguel</namePart>
<namePart type="family">Arevalillo-Herráez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Natural Language Generation Conference: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saad</namePart>
<namePart type="family">Mahamood</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nguyen</namePart>
<namePart type="given">Le</namePart>
<namePart type="family">Minh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daphne</namePart>
<namePart type="family">Ippolito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Advancements in machine learning, particularly Large Language Models (LLMs), offer new opportunities for enhancing education through personalized assistance. We introduce “Be My Mate,” an agent that leverages LLMs to simulate virtual peer students in online collaborative education. The system includes a subscription module for real-time updates and a conversational module for generating supportive interactions. Key challenges include creating temporally realistic interactions and credible error generation. The initial demonstration shows promise in enhancing student engagement and learning outcomes.</abstract>
<identifier type="citekey">solera-monforte-etal-2024-mate-simulating</identifier>
<location>
<url>https://aclanthology.org/2024.inlg-demos.1</url>
</location>
<part>
<date>2024-09</date>
<extent unit="page">
<start>1</start>
<end>3</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Be My Mate: Simulating Virtual Students for collaboration using Large Language Models
%A Solera-Monforte, Sergi
%A Arnau-González, Pablo
%A Arevalillo-Herráez, Miguel
%Y Mahamood, Saad
%Y Minh, Nguyen Le
%Y Ippolito, Daphne
%S Proceedings of the 17th International Natural Language Generation Conference: System Demonstrations
%D 2024
%8 September
%I Association for Computational Linguistics
%C Tokyo, Japan
%F solera-monforte-etal-2024-mate-simulating
%X Advancements in machine learning, particularly Large Language Models (LLMs), offer new opportunities for enhancing education through personalized assistance. We introduce “Be My Mate,” an agent that leverages LLMs to simulate virtual peer students in online collaborative education. The system includes a subscription module for real-time updates and a conversational module for generating supportive interactions. Key challenges include creating temporally realistic interactions and credible error generation. The initial demonstration shows promise in enhancing student engagement and learning outcomes.
%U https://aclanthology.org/2024.inlg-demos.1
%P 1-3
Markdown (Informal)
[Be My Mate: Simulating Virtual Students for collaboration using Large Language Models](https://aclanthology.org/2024.inlg-demos.1) (Solera-Monforte et al., INLG 2024)
ACL