@inproceedings{kasner-etal-2024-factgenie-framework,
title = "factgenie: A Framework for Span-based Evaluation of Generated Texts",
author = "Kasner, Zden{\v{e}}k and
Platek, Ondrej and
Schmidtova, Patricia and
Balloccu, Simone and
Dusek, Ondrej",
editor = "Mahamood, Saad and
Minh, Nguyen Le and
Ippolito, Daphne",
booktitle = "Proceedings of the 17th International Natural Language Generation Conference: System Demonstrations",
month = sep,
year = "2024",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.inlg-demos.5",
pages = "13--15",
abstract = "We present {`}factgenie{`}: a framework for annotating and visualizing word spans in textual model outputs. Annotations can capture various span-based phenomena such as semantic inaccuracies or irrelevant text. With {`}factgenie{`}, the annotations can be collected both from human crowdworkers and large language models. Our framework consists of a web interface for data visualization and gathering text annotations, powered by an easily extensible codebase.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kasner-etal-2024-factgenie-framework">
<titleInfo>
<title>factgenie: A Framework for Span-based Evaluation of Generated Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zdeněk</namePart>
<namePart type="family">Kasner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondrej</namePart>
<namePart type="family">Platek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="family">Schmidtova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simone</namePart>
<namePart type="family">Balloccu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondrej</namePart>
<namePart type="family">Dusek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th International Natural Language Generation Conference: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saad</namePart>
<namePart type="family">Mahamood</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nguyen</namePart>
<namePart type="given">Le</namePart>
<namePart type="family">Minh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daphne</namePart>
<namePart type="family">Ippolito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present ‘factgenie‘: a framework for annotating and visualizing word spans in textual model outputs. Annotations can capture various span-based phenomena such as semantic inaccuracies or irrelevant text. With ‘factgenie‘, the annotations can be collected both from human crowdworkers and large language models. Our framework consists of a web interface for data visualization and gathering text annotations, powered by an easily extensible codebase.</abstract>
<identifier type="citekey">kasner-etal-2024-factgenie-framework</identifier>
<location>
<url>https://aclanthology.org/2024.inlg-demos.5</url>
</location>
<part>
<date>2024-09</date>
<extent unit="page">
<start>13</start>
<end>15</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T factgenie: A Framework for Span-based Evaluation of Generated Texts
%A Kasner, Zdeněk
%A Platek, Ondrej
%A Schmidtova, Patricia
%A Balloccu, Simone
%A Dusek, Ondrej
%Y Mahamood, Saad
%Y Minh, Nguyen Le
%Y Ippolito, Daphne
%S Proceedings of the 17th International Natural Language Generation Conference: System Demonstrations
%D 2024
%8 September
%I Association for Computational Linguistics
%C Tokyo, Japan
%F kasner-etal-2024-factgenie-framework
%X We present ‘factgenie‘: a framework for annotating and visualizing word spans in textual model outputs. Annotations can capture various span-based phenomena such as semantic inaccuracies or irrelevant text. With ‘factgenie‘, the annotations can be collected both from human crowdworkers and large language models. Our framework consists of a web interface for data visualization and gathering text annotations, powered by an easily extensible codebase.
%U https://aclanthology.org/2024.inlg-demos.5
%P 13-15
Markdown (Informal)
[factgenie: A Framework for Span-based Evaluation of Generated Texts](https://aclanthology.org/2024.inlg-demos.5) (Kasner et al., INLG 2024)
ACL