@inproceedings{sirin-lippincott-2024-dynamic,
title = "Dynamic embedded topic models and change-point detection for exploring literary-historical hypotheses",
author = "Sirin, Hale and
Lippincott, Thomas",
editor = "Bizzoni, Yuri and
Degaetano-Ortlieb, Stefania and
Kazantseva, Anna and
Szpakowicz, Stan",
booktitle = "Proceedings of the 8th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2024)",
month = mar,
year = "2024",
address = "St. Julians, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.latechclfl-1.22",
pages = "231--236",
abstract = "We present a novel combination of dynamic embedded topic models and change-point detection to explore diachronic change of lexical semantic modality in classical and early Christian Latin. We demonstrate several methods for finding and characterizing patterns in the output, and relating them to traditional scholarship in Comparative Literature and Classics. This simple approach to unsupervised models of semantic change can be applied to any suitable corpus, and we conclude with future directions and refinements aiming to allow noisier, less-curated materials to meet that threshold.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sirin-lippincott-2024-dynamic">
<titleInfo>
<title>Dynamic embedded topic models and change-point detection for exploring literary-historical hypotheses</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hale</namePart>
<namePart type="family">Sirin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Lippincott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuri</namePart>
<namePart type="family">Bizzoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefania</namePart>
<namePart type="family">Degaetano-Ortlieb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Kazantseva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stan</namePart>
<namePart type="family">Szpakowicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julians, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a novel combination of dynamic embedded topic models and change-point detection to explore diachronic change of lexical semantic modality in classical and early Christian Latin. We demonstrate several methods for finding and characterizing patterns in the output, and relating them to traditional scholarship in Comparative Literature and Classics. This simple approach to unsupervised models of semantic change can be applied to any suitable corpus, and we conclude with future directions and refinements aiming to allow noisier, less-curated materials to meet that threshold.</abstract>
<identifier type="citekey">sirin-lippincott-2024-dynamic</identifier>
<location>
<url>https://aclanthology.org/2024.latechclfl-1.22</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>231</start>
<end>236</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dynamic embedded topic models and change-point detection for exploring literary-historical hypotheses
%A Sirin, Hale
%A Lippincott, Thomas
%Y Bizzoni, Yuri
%Y Degaetano-Ortlieb, Stefania
%Y Kazantseva, Anna
%Y Szpakowicz, Stan
%S Proceedings of the 8th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2024)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julians, Malta
%F sirin-lippincott-2024-dynamic
%X We present a novel combination of dynamic embedded topic models and change-point detection to explore diachronic change of lexical semantic modality in classical and early Christian Latin. We demonstrate several methods for finding and characterizing patterns in the output, and relating them to traditional scholarship in Comparative Literature and Classics. This simple approach to unsupervised models of semantic change can be applied to any suitable corpus, and we conclude with future directions and refinements aiming to allow noisier, less-curated materials to meet that threshold.
%U https://aclanthology.org/2024.latechclfl-1.22
%P 231-236
Markdown (Informal)
[Dynamic embedded topic models and change-point detection for exploring literary-historical hypotheses](https://aclanthology.org/2024.latechclfl-1.22) (Sirin & Lippincott, LaTeCHCLfL-WS 2024)
ACL