MoZIP: A Multilingual Benchmark to Evaluate Large Language Models in Intellectual Property

Shiwen Ni, Minghuan Tan, Yuelin Bai, Fuqiang Niu, Min Yang, Bowen Zhang, Ruifeng Xu, Xiaojun Chen, Chengming Li, Xiping Hu


Abstract
Large language models (LLMs) have demonstrated impressive performance in various natural language processing (NLP) tasks. However, there is limited understanding of how well LLMs perform in specific domains (e.g, the intellectual property (IP) domain). In this paper, we contribute a new benchmark, the first Multilingual-oriented quiZ on Intellectual Property (MoZIP), for the evaluation of LLMs in the IP domain. The MoZIP benchmark includes three challenging tasks: IP multiple-choice quiz (IPQuiz), IP question answering (IPQA), and patent matching (PatentMatch). In addition, we also develop a new IP-oriented multilingual large language model (called MoZi), which is a BLOOMZ-based model that has been supervised fine-tuned with multilingual IP-related text data. We evaluate our proposed MoZi model and four well-known LLMs (i.e., BLOOMZ, BELLE, ChatGLM and ChatGPT) on the MoZIP benchmark. Experimental results demonstrate that MoZi outperforms BLOOMZ, BELLE and ChatGLM by a noticeable margin, while it had lower scores compared with ChatGPT. Notably, the performance of current LLMs on the MoZIP benchmark has much room for improvement, and even the most powerful ChatGPT does not reach the passing level. Our source code, data, and models are available at https://github.com/AI-for-Science/MoZi.
Anthology ID:
2024.lrec-main.1018
Volume:
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Month:
May
Year:
2024
Address:
Torino, Italia
Editors:
Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
Venues:
LREC | COLING
SIG:
Publisher:
ELRA and ICCL
Note:
Pages:
11658–11668
Language:
URL:
https://aclanthology.org/2024.lrec-main.1018
DOI:
Bibkey:
Cite (ACL):
Shiwen Ni, Minghuan Tan, Yuelin Bai, Fuqiang Niu, Min Yang, Bowen Zhang, Ruifeng Xu, Xiaojun Chen, Chengming Li, and Xiping Hu. 2024. MoZIP: A Multilingual Benchmark to Evaluate Large Language Models in Intellectual Property. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 11658–11668, Torino, Italia. ELRA and ICCL.
Cite (Informal):
MoZIP: A Multilingual Benchmark to Evaluate Large Language Models in Intellectual Property (Ni et al., LREC-COLING 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.lrec-main.1018.pdf