@inproceedings{paggio-etal-2024-multimodal,
title = "Multimodal Behaviour in an Online Environment: The {GEHM} Zoom Corpus Collection",
author = "Paggio, Patrizia and
Agirrezabal, Manex and
Navarretta, Costanza and
Vitasovic, Leo",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1038/",
pages = "11890--11900",
abstract = "This paper introduces a novel multimodal corpus consisting of 12 video recordings of Zoom meetings held in English by an international group of researchers from September 2021 to March 2023. The meetings have an average duration of about 40 minutes each, for a total of 8 hours. The number of participants varies from 5 to 9 per meeting. The participants' speech was transcribed automatically using WhisperX, while visual coordinates of several keypoints of the participants' head, their shoulders and wrists, were extracted using OpenPose. The audio-visual recordings will be distributed together with the orthographic transcription as well as the visual coordinates. In the paper we describe the way the corpus was collected, transcribed and enriched with the visual coordinates, we give descriptive statistics concerning both the speech transcription and the visual keypoint values and we present and discuss visualisations of these values. Finally, we carry out a short preliminary analysis of the role of feedback in the meetings, and show how visualising the coordinates extracted via OpenPose can be used to see how gestural behaviour supports the use of feedback words during the interaction."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="paggio-etal-2024-multimodal">
<titleInfo>
<title>Multimodal Behaviour in an Online Environment: The GEHM Zoom Corpus Collection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Patrizia</namePart>
<namePart type="family">Paggio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manex</namePart>
<namePart type="family">Agirrezabal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Costanza</namePart>
<namePart type="family">Navarretta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Vitasovic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper introduces a novel multimodal corpus consisting of 12 video recordings of Zoom meetings held in English by an international group of researchers from September 2021 to March 2023. The meetings have an average duration of about 40 minutes each, for a total of 8 hours. The number of participants varies from 5 to 9 per meeting. The participants’ speech was transcribed automatically using WhisperX, while visual coordinates of several keypoints of the participants’ head, their shoulders and wrists, were extracted using OpenPose. The audio-visual recordings will be distributed together with the orthographic transcription as well as the visual coordinates. In the paper we describe the way the corpus was collected, transcribed and enriched with the visual coordinates, we give descriptive statistics concerning both the speech transcription and the visual keypoint values and we present and discuss visualisations of these values. Finally, we carry out a short preliminary analysis of the role of feedback in the meetings, and show how visualising the coordinates extracted via OpenPose can be used to see how gestural behaviour supports the use of feedback words during the interaction.</abstract>
<identifier type="citekey">paggio-etal-2024-multimodal</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1038/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>11890</start>
<end>11900</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multimodal Behaviour in an Online Environment: The GEHM Zoom Corpus Collection
%A Paggio, Patrizia
%A Agirrezabal, Manex
%A Navarretta, Costanza
%A Vitasovic, Leo
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F paggio-etal-2024-multimodal
%X This paper introduces a novel multimodal corpus consisting of 12 video recordings of Zoom meetings held in English by an international group of researchers from September 2021 to March 2023. The meetings have an average duration of about 40 minutes each, for a total of 8 hours. The number of participants varies from 5 to 9 per meeting. The participants’ speech was transcribed automatically using WhisperX, while visual coordinates of several keypoints of the participants’ head, their shoulders and wrists, were extracted using OpenPose. The audio-visual recordings will be distributed together with the orthographic transcription as well as the visual coordinates. In the paper we describe the way the corpus was collected, transcribed and enriched with the visual coordinates, we give descriptive statistics concerning both the speech transcription and the visual keypoint values and we present and discuss visualisations of these values. Finally, we carry out a short preliminary analysis of the role of feedback in the meetings, and show how visualising the coordinates extracted via OpenPose can be used to see how gestural behaviour supports the use of feedback words during the interaction.
%U https://aclanthology.org/2024.lrec-main.1038/
%P 11890-11900
Markdown (Informal)
[Multimodal Behaviour in an Online Environment: The GEHM Zoom Corpus Collection](https://aclanthology.org/2024.lrec-main.1038/) (Paggio et al., LREC-COLING 2024)
ACL