@inproceedings{sun-etal-2024-multi,
title = "Multi-Objective Forward Reasoning and Multi-Reward Backward Refinement for Product Review Summarization",
author = "Sun, Libo and
Wang, Siyuan and
Han, Meng and
Lai, Ruofei and
Zhang, Xinyu and
Huang, Xuanjing and
Wei, Zhongyu",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1043/",
pages = "11944--11955",
abstract = "Product review summarization aims to generate a concise summary based on product reviews to facilitate purchasing decisions. This intricate task gives rise to three challenges in existing work: factual accuracy, aspect comprehensiveness, and content relevance. In this paper, we first propose an FB-Thinker framework to improve the summarization ability of LLMs with multi-objective forward reasoning and multi-reward backward refinement. To enable LLM with these dual capabilities, we present two Chinese product review summarization datasets, Product-CSum and Product-CSum-Cross, for both instruction-tuning and cross-domain evaluation. Specifically, these datasets are collected via GPT-assisted manual annotations from an online forum and public datasets. We further design an evaluation mechanism Product-Eval, integrating both automatic and human evaluation across multiple dimensions for product summarization. Experimental results show the competitiveness and generalizability of our proposed framework in the product review summarization tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sun-etal-2024-multi">
<titleInfo>
<title>Multi-Objective Forward Reasoning and Multi-Reward Backward Refinement for Product Review Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Libo</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siyuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meng</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruofei</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinyu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhongyu</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Product review summarization aims to generate a concise summary based on product reviews to facilitate purchasing decisions. This intricate task gives rise to three challenges in existing work: factual accuracy, aspect comprehensiveness, and content relevance. In this paper, we first propose an FB-Thinker framework to improve the summarization ability of LLMs with multi-objective forward reasoning and multi-reward backward refinement. To enable LLM with these dual capabilities, we present two Chinese product review summarization datasets, Product-CSum and Product-CSum-Cross, for both instruction-tuning and cross-domain evaluation. Specifically, these datasets are collected via GPT-assisted manual annotations from an online forum and public datasets. We further design an evaluation mechanism Product-Eval, integrating both automatic and human evaluation across multiple dimensions for product summarization. Experimental results show the competitiveness and generalizability of our proposed framework in the product review summarization tasks.</abstract>
<identifier type="citekey">sun-etal-2024-multi</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1043/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>11944</start>
<end>11955</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Objective Forward Reasoning and Multi-Reward Backward Refinement for Product Review Summarization
%A Sun, Libo
%A Wang, Siyuan
%A Han, Meng
%A Lai, Ruofei
%A Zhang, Xinyu
%A Huang, Xuanjing
%A Wei, Zhongyu
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F sun-etal-2024-multi
%X Product review summarization aims to generate a concise summary based on product reviews to facilitate purchasing decisions. This intricate task gives rise to three challenges in existing work: factual accuracy, aspect comprehensiveness, and content relevance. In this paper, we first propose an FB-Thinker framework to improve the summarization ability of LLMs with multi-objective forward reasoning and multi-reward backward refinement. To enable LLM with these dual capabilities, we present two Chinese product review summarization datasets, Product-CSum and Product-CSum-Cross, for both instruction-tuning and cross-domain evaluation. Specifically, these datasets are collected via GPT-assisted manual annotations from an online forum and public datasets. We further design an evaluation mechanism Product-Eval, integrating both automatic and human evaluation across multiple dimensions for product summarization. Experimental results show the competitiveness and generalizability of our proposed framework in the product review summarization tasks.
%U https://aclanthology.org/2024.lrec-main.1043/
%P 11944-11955
Markdown (Informal)
[Multi-Objective Forward Reasoning and Multi-Reward Backward Refinement for Product Review Summarization](https://aclanthology.org/2024.lrec-main.1043/) (Sun et al., LREC-COLING 2024)
ACL
- Libo Sun, Siyuan Wang, Meng Han, Ruofei Lai, Xinyu Zhang, Xuanjing Huang, and Zhongyu Wei. 2024. Multi-Objective Forward Reasoning and Multi-Reward Backward Refinement for Product Review Summarization. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 11944–11955, Torino, Italia. ELRA and ICCL.