@inproceedings{zhu-etal-2024-quite,
title = "Quite Good, but Not Enough: Nationality Bias in Large Language Models - a Case Study of {C}hat{GPT}",
author = "Zhu, Shucheng and
Wang, Weikang and
Liu, Ying",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1180/",
pages = "13489--13502",
abstract = "While nationality is a pivotal demographic element that enhances the performance of language models, it has received far less scrutiny regarding inherent biases. This study investigates nationality bias in ChatGPT (GPT-3.5), a large language model (LLM) designed for text generation. The research covers 195 countries, 4 temperature settings, and 3 distinct prompt types, generating 4,680 discourses about nationality descriptions in Chinese and English. Automated metrics were used to analyze the nationality bias, and expert annotators alongside ChatGPT itself evaluated the perceived bias. The results show that ChatGPT`s generated discourses are predominantly positive, especially compared to its predecessor, GPT-2. However, when prompted with negative inclinations, it occasionally produces negative content. Despite ChatGPT considering its generated text as neutral, it shows consistent self-awareness about nationality bias when subjected to the same pair-wise comparison annotation framework used by human annotators. In conclusion, while ChatGPT`s generated texts seem friendly and positive, they reflect the inherent nationality biases in the real world. This bias may vary across different language versions of ChatGPT, indicating diverse cultural perspectives. The study highlights the subtle and pervasive nature of biases within LLMs, emphasizing the need for further scrutiny."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhu-etal-2024-quite">
<titleInfo>
<title>Quite Good, but Not Enough: Nationality Bias in Large Language Models - a Case Study of ChatGPT</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shucheng</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weikang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ying</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While nationality is a pivotal demographic element that enhances the performance of language models, it has received far less scrutiny regarding inherent biases. This study investigates nationality bias in ChatGPT (GPT-3.5), a large language model (LLM) designed for text generation. The research covers 195 countries, 4 temperature settings, and 3 distinct prompt types, generating 4,680 discourses about nationality descriptions in Chinese and English. Automated metrics were used to analyze the nationality bias, and expert annotators alongside ChatGPT itself evaluated the perceived bias. The results show that ChatGPT‘s generated discourses are predominantly positive, especially compared to its predecessor, GPT-2. However, when prompted with negative inclinations, it occasionally produces negative content. Despite ChatGPT considering its generated text as neutral, it shows consistent self-awareness about nationality bias when subjected to the same pair-wise comparison annotation framework used by human annotators. In conclusion, while ChatGPT‘s generated texts seem friendly and positive, they reflect the inherent nationality biases in the real world. This bias may vary across different language versions of ChatGPT, indicating diverse cultural perspectives. The study highlights the subtle and pervasive nature of biases within LLMs, emphasizing the need for further scrutiny.</abstract>
<identifier type="citekey">zhu-etal-2024-quite</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1180/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>13489</start>
<end>13502</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Quite Good, but Not Enough: Nationality Bias in Large Language Models - a Case Study of ChatGPT
%A Zhu, Shucheng
%A Wang, Weikang
%A Liu, Ying
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F zhu-etal-2024-quite
%X While nationality is a pivotal demographic element that enhances the performance of language models, it has received far less scrutiny regarding inherent biases. This study investigates nationality bias in ChatGPT (GPT-3.5), a large language model (LLM) designed for text generation. The research covers 195 countries, 4 temperature settings, and 3 distinct prompt types, generating 4,680 discourses about nationality descriptions in Chinese and English. Automated metrics were used to analyze the nationality bias, and expert annotators alongside ChatGPT itself evaluated the perceived bias. The results show that ChatGPT‘s generated discourses are predominantly positive, especially compared to its predecessor, GPT-2. However, when prompted with negative inclinations, it occasionally produces negative content. Despite ChatGPT considering its generated text as neutral, it shows consistent self-awareness about nationality bias when subjected to the same pair-wise comparison annotation framework used by human annotators. In conclusion, while ChatGPT‘s generated texts seem friendly and positive, they reflect the inherent nationality biases in the real world. This bias may vary across different language versions of ChatGPT, indicating diverse cultural perspectives. The study highlights the subtle and pervasive nature of biases within LLMs, emphasizing the need for further scrutiny.
%U https://aclanthology.org/2024.lrec-main.1180/
%P 13489-13502
Markdown (Informal)
[Quite Good, but Not Enough: Nationality Bias in Large Language Models - a Case Study of ChatGPT](https://aclanthology.org/2024.lrec-main.1180/) (Zhu et al., LREC-COLING 2024)
ACL