@inproceedings{ferro-etal-2024-readlet,
title = "{R}ead{L}et: A Dataset for Oral, Visual and Tactile Text Reading Data of Early and Mature Readers",
author = "Ferro, Marcello and
Marzi, Claudia and
Nadalini, Andrea and
Taxitari, Loukia and
Lento, Alessandro and
Pirrelli, Vito",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1188",
pages = "13595--13609",
abstract = "The paper presents the design and construction of a time-stamped multimodal dataset for reading research, including multiple time-aligned temporal signals elicited with four experimental trials of connected text reading by both child and adult readers. We present the experimental protocols, as well as the data acquisition process and the post-processing phase of data annotation/augmentation. To evaluate the potential and usefulness of a time-aligned multimodal dataset for reading research, we present a few statistical analyses showing the correlation and complementarity of multimodal time-series of reading data, as well as some results of modelling adults{'} reading data by integrating different modalities. The total dataset size amounts to about 2.5 GByte in compressed format.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ferro-etal-2024-readlet">
<titleInfo>
<title>ReadLet: A Dataset for Oral, Visual and Tactile Text Reading Data of Early and Mature Readers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marcello</namePart>
<namePart type="family">Ferro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Marzi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Nadalini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Loukia</namePart>
<namePart type="family">Taxitari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lento</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vito</namePart>
<namePart type="family">Pirrelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper presents the design and construction of a time-stamped multimodal dataset for reading research, including multiple time-aligned temporal signals elicited with four experimental trials of connected text reading by both child and adult readers. We present the experimental protocols, as well as the data acquisition process and the post-processing phase of data annotation/augmentation. To evaluate the potential and usefulness of a time-aligned multimodal dataset for reading research, we present a few statistical analyses showing the correlation and complementarity of multimodal time-series of reading data, as well as some results of modelling adults’ reading data by integrating different modalities. The total dataset size amounts to about 2.5 GByte in compressed format.</abstract>
<identifier type="citekey">ferro-etal-2024-readlet</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1188</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>13595</start>
<end>13609</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ReadLet: A Dataset for Oral, Visual and Tactile Text Reading Data of Early and Mature Readers
%A Ferro, Marcello
%A Marzi, Claudia
%A Nadalini, Andrea
%A Taxitari, Loukia
%A Lento, Alessandro
%A Pirrelli, Vito
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F ferro-etal-2024-readlet
%X The paper presents the design and construction of a time-stamped multimodal dataset for reading research, including multiple time-aligned temporal signals elicited with four experimental trials of connected text reading by both child and adult readers. We present the experimental protocols, as well as the data acquisition process and the post-processing phase of data annotation/augmentation. To evaluate the potential and usefulness of a time-aligned multimodal dataset for reading research, we present a few statistical analyses showing the correlation and complementarity of multimodal time-series of reading data, as well as some results of modelling adults’ reading data by integrating different modalities. The total dataset size amounts to about 2.5 GByte in compressed format.
%U https://aclanthology.org/2024.lrec-main.1188
%P 13595-13609
Markdown (Informal)
[ReadLet: A Dataset for Oral, Visual and Tactile Text Reading Data of Early and Mature Readers](https://aclanthology.org/2024.lrec-main.1188) (Ferro et al., LREC-COLING 2024)
ACL
- Marcello Ferro, Claudia Marzi, Andrea Nadalini, Loukia Taxitari, Alessandro Lento, and Vito Pirrelli. 2024. ReadLet: A Dataset for Oral, Visual and Tactile Text Reading Data of Early and Mature Readers. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 13595–13609, Torino, Italia. ELRA and ICCL.