@inproceedings{hu-etal-2024-reduce,
title = "Reduce Redundancy Then Rerank: Enhancing Code Summarization with a Novel Pipeline Framework",
author = "Hu, Xiaoyu and
Zhang, Xu and
Lin, Zexu and
Zhou, Deyu",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1198/",
pages = "13722--13733",
abstract = "Code summarization is the task of automatically generating natural language descriptions from source code. Recently, pre-trained language models have gained significant popularity in code summarization due to their capacity to capture richer semantic representations of both code and natural language. Nonetheless, contemporary code summarization models grapple with two fundamental limitations. (1) Some tokens in the code are irrelevant to the natural language description and damage the alignment of the representation spaces for code and language. (2) Most approaches are based on the encoder-decoder framework, which is often plagued by the exposure bias problem, hampering the effectiveness of their decoding sampling strategies. To address the two challenges, we propose a novel pipeline framework named Reduce Redundancy then Rerank (Re{\textasciicircum}3). Specifically, a redundancy reduction component is introduced to eliminate redundant information in code representation space. Moreover, a re-ranking model is incorporated to select more suitable summary candidates, alleviating the exposure bias problem. The experimental results show the effectiveness of Re{\textasciicircum}3 over some state-of-the-art approaches across six different datasets from the CodeSearchNet benchmark."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hu-etal-2024-reduce">
<titleInfo>
<title>Reduce Redundancy Then Rerank: Enhancing Code Summarization with a Novel Pipeline Framework</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaoyu</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zexu</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deyu</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Code summarization is the task of automatically generating natural language descriptions from source code. Recently, pre-trained language models have gained significant popularity in code summarization due to their capacity to capture richer semantic representations of both code and natural language. Nonetheless, contemporary code summarization models grapple with two fundamental limitations. (1) Some tokens in the code are irrelevant to the natural language description and damage the alignment of the representation spaces for code and language. (2) Most approaches are based on the encoder-decoder framework, which is often plagued by the exposure bias problem, hampering the effectiveness of their decoding sampling strategies. To address the two challenges, we propose a novel pipeline framework named Reduce Redundancy then Rerank (Re⌃3). Specifically, a redundancy reduction component is introduced to eliminate redundant information in code representation space. Moreover, a re-ranking model is incorporated to select more suitable summary candidates, alleviating the exposure bias problem. The experimental results show the effectiveness of Re⌃3 over some state-of-the-art approaches across six different datasets from the CodeSearchNet benchmark.</abstract>
<identifier type="citekey">hu-etal-2024-reduce</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1198/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>13722</start>
<end>13733</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reduce Redundancy Then Rerank: Enhancing Code Summarization with a Novel Pipeline Framework
%A Hu, Xiaoyu
%A Zhang, Xu
%A Lin, Zexu
%A Zhou, Deyu
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F hu-etal-2024-reduce
%X Code summarization is the task of automatically generating natural language descriptions from source code. Recently, pre-trained language models have gained significant popularity in code summarization due to their capacity to capture richer semantic representations of both code and natural language. Nonetheless, contemporary code summarization models grapple with two fundamental limitations. (1) Some tokens in the code are irrelevant to the natural language description and damage the alignment of the representation spaces for code and language. (2) Most approaches are based on the encoder-decoder framework, which is often plagued by the exposure bias problem, hampering the effectiveness of their decoding sampling strategies. To address the two challenges, we propose a novel pipeline framework named Reduce Redundancy then Rerank (Re⌃3). Specifically, a redundancy reduction component is introduced to eliminate redundant information in code representation space. Moreover, a re-ranking model is incorporated to select more suitable summary candidates, alleviating the exposure bias problem. The experimental results show the effectiveness of Re⌃3 over some state-of-the-art approaches across six different datasets from the CodeSearchNet benchmark.
%U https://aclanthology.org/2024.lrec-main.1198/
%P 13722-13733
Markdown (Informal)
[Reduce Redundancy Then Rerank: Enhancing Code Summarization with a Novel Pipeline Framework](https://aclanthology.org/2024.lrec-main.1198/) (Hu et al., LREC-COLING 2024)
ACL