@inproceedings{rezaee-etal-2024-tweetter,
title = "{T}weet{TER}: A Benchmark for Target Entity Retrieval on {T}witter without Knowledge Bases",
author = "Rezaee, Kiamehr and
Camacho-Collados, Jose and
Pilehvar, Mohammad Taher",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1468/",
pages = "16890--16896",
abstract = "Entity linking is a well-established task in NLP consisting of associating entity mentions with entries in a knowledge base. Current models have demonstrated competitive performance in standard text settings. However, when it comes to noisy domains such as social media, certain challenges still persist. Typically, to evaluate entity linking on existing benchmarks, a comprehensive knowledge base is necessary and models are expected to possess an understanding of all the entities contained within the knowledge base. However, in practical scenarios where the objective is to retrieve sentences specifically related to a particular entity, strict adherence to a complete understanding of all entities in the knowledge base may not be necessary. To address this gap, we introduce TweetTER (Tweet Target Entity Retrieval), a novel benchmark that aims to bridge the challenges in entity linking. The distinguishing feature of this benchmark is its approach of re-framing entity linking as a binary entity retrieval task. This enables the evaluation of language models' performance without relying on a conventional knowledge base, providing a more practical and versatile evaluation framework for assessing the effectiveness of language models in entity retrieval tasks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rezaee-etal-2024-tweetter">
<titleInfo>
<title>TweetTER: A Benchmark for Target Entity Retrieval on Twitter without Knowledge Bases</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kiamehr</namePart>
<namePart type="family">Rezaee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="family">Camacho-Collados</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohammad</namePart>
<namePart type="given">Taher</namePart>
<namePart type="family">Pilehvar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Entity linking is a well-established task in NLP consisting of associating entity mentions with entries in a knowledge base. Current models have demonstrated competitive performance in standard text settings. However, when it comes to noisy domains such as social media, certain challenges still persist. Typically, to evaluate entity linking on existing benchmarks, a comprehensive knowledge base is necessary and models are expected to possess an understanding of all the entities contained within the knowledge base. However, in practical scenarios where the objective is to retrieve sentences specifically related to a particular entity, strict adherence to a complete understanding of all entities in the knowledge base may not be necessary. To address this gap, we introduce TweetTER (Tweet Target Entity Retrieval), a novel benchmark that aims to bridge the challenges in entity linking. The distinguishing feature of this benchmark is its approach of re-framing entity linking as a binary entity retrieval task. This enables the evaluation of language models’ performance without relying on a conventional knowledge base, providing a more practical and versatile evaluation framework for assessing the effectiveness of language models in entity retrieval tasks.</abstract>
<identifier type="citekey">rezaee-etal-2024-tweetter</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.1468/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>16890</start>
<end>16896</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TweetTER: A Benchmark for Target Entity Retrieval on Twitter without Knowledge Bases
%A Rezaee, Kiamehr
%A Camacho-Collados, Jose
%A Pilehvar, Mohammad Taher
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F rezaee-etal-2024-tweetter
%X Entity linking is a well-established task in NLP consisting of associating entity mentions with entries in a knowledge base. Current models have demonstrated competitive performance in standard text settings. However, when it comes to noisy domains such as social media, certain challenges still persist. Typically, to evaluate entity linking on existing benchmarks, a comprehensive knowledge base is necessary and models are expected to possess an understanding of all the entities contained within the knowledge base. However, in practical scenarios where the objective is to retrieve sentences specifically related to a particular entity, strict adherence to a complete understanding of all entities in the knowledge base may not be necessary. To address this gap, we introduce TweetTER (Tweet Target Entity Retrieval), a novel benchmark that aims to bridge the challenges in entity linking. The distinguishing feature of this benchmark is its approach of re-framing entity linking as a binary entity retrieval task. This enables the evaluation of language models’ performance without relying on a conventional knowledge base, providing a more practical and versatile evaluation framework for assessing the effectiveness of language models in entity retrieval tasks.
%U https://aclanthology.org/2024.lrec-main.1468/
%P 16890-16896
Markdown (Informal)
[TweetTER: A Benchmark for Target Entity Retrieval on Twitter without Knowledge Bases](https://aclanthology.org/2024.lrec-main.1468/) (Rezaee et al., LREC-COLING 2024)
ACL