@inproceedings{han-etal-2024-conjoin,
title = "Conjoin after Decompose: Improving Few-Shot Performance of Named Entity Recognition",
author = "Han, Chengcheng and
Zhu, Renyu and
Kuang, Jun and
Chen, Fengjiao and
Li, Xiang and
Gao, Ming and
Cao, Xuezhi and
Xian, Yunsen",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.329",
pages = "3707--3717",
abstract = "Prompt-based methods have been widely used in few-shot named entity recognition (NER). In this paper, we first conduct a preliminary experiment and observe that the key to affecting the performance of prompt-based NER models is the capability to detect entity boundaries. However, most existing models fail to boost such capability. To solve the issue, we propose a novel model, ParaBART, which consists of a BART encoder and a specially designed parabiotic decoder. Specifically, the parabiotic decoder includes two BART decoders and a conjoint module. The two decoders are responsible for entity boundary detection and entity type classification, respectively. They are connected by the conjoint module, which is used to replace unimportant tokens{'} embeddings in one decoder with the average embedding of all the tokens in the other. We further present a novel boundary expansion strategy to enhance the model{'}s capability in entity type classification. Experimental results show that ParaBART can achieve significant performance gains over state-of-the-art competitors.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="han-etal-2024-conjoin">
<titleInfo>
<title>Conjoin after Decompose: Improving Few-Shot Performance of Named Entity Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengcheng</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Renyu</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Kuang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fengjiao</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuezhi</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yunsen</namePart>
<namePart type="family">Xian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Prompt-based methods have been widely used in few-shot named entity recognition (NER). In this paper, we first conduct a preliminary experiment and observe that the key to affecting the performance of prompt-based NER models is the capability to detect entity boundaries. However, most existing models fail to boost such capability. To solve the issue, we propose a novel model, ParaBART, which consists of a BART encoder and a specially designed parabiotic decoder. Specifically, the parabiotic decoder includes two BART decoders and a conjoint module. The two decoders are responsible for entity boundary detection and entity type classification, respectively. They are connected by the conjoint module, which is used to replace unimportant tokens’ embeddings in one decoder with the average embedding of all the tokens in the other. We further present a novel boundary expansion strategy to enhance the model’s capability in entity type classification. Experimental results show that ParaBART can achieve significant performance gains over state-of-the-art competitors.</abstract>
<identifier type="citekey">han-etal-2024-conjoin</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.329</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>3707</start>
<end>3717</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Conjoin after Decompose: Improving Few-Shot Performance of Named Entity Recognition
%A Han, Chengcheng
%A Zhu, Renyu
%A Kuang, Jun
%A Chen, Fengjiao
%A Li, Xiang
%A Gao, Ming
%A Cao, Xuezhi
%A Xian, Yunsen
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F han-etal-2024-conjoin
%X Prompt-based methods have been widely used in few-shot named entity recognition (NER). In this paper, we first conduct a preliminary experiment and observe that the key to affecting the performance of prompt-based NER models is the capability to detect entity boundaries. However, most existing models fail to boost such capability. To solve the issue, we propose a novel model, ParaBART, which consists of a BART encoder and a specially designed parabiotic decoder. Specifically, the parabiotic decoder includes two BART decoders and a conjoint module. The two decoders are responsible for entity boundary detection and entity type classification, respectively. They are connected by the conjoint module, which is used to replace unimportant tokens’ embeddings in one decoder with the average embedding of all the tokens in the other. We further present a novel boundary expansion strategy to enhance the model’s capability in entity type classification. Experimental results show that ParaBART can achieve significant performance gains over state-of-the-art competitors.
%U https://aclanthology.org/2024.lrec-main.329
%P 3707-3717
Markdown (Informal)
[Conjoin after Decompose: Improving Few-Shot Performance of Named Entity Recognition](https://aclanthology.org/2024.lrec-main.329) (Han et al., LREC-COLING 2024)
ACL
- Chengcheng Han, Renyu Zhu, Jun Kuang, Fengjiao Chen, Xiang Li, Ming Gao, Xuezhi Cao, and Yunsen Xian. 2024. Conjoin after Decompose: Improving Few-Shot Performance of Named Entity Recognition. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 3707–3717, Torino, Italia. ELRA and ICCL.