@inproceedings{anastasiou-etal-2024-luxembourgish,
title = "A {L}uxembourgish Corpus as a Gender Bias Evaluation Testset",
author = "Anastasiou, Dimitra and
Blond-Hanten, Carole and
Gallais, Marie",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.70",
pages = "784--788",
abstract = "According to the United Nations Development Programme, gender inequality is a metric that is composed of three dimensions: reproductive health, empowerment, and the labour market. Gender inequality is an obstacle to equal opportunities in society as a whole. In this paper we present our work-in-progress of designing and playing a physical game with digital elements. We currently conduct Conversation Analysis of transcribed speech of 58567 words and documenting bias. We also test OpenAI{'}s ChatGPT for bias in quiz-like gender-related questions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="anastasiou-etal-2024-luxembourgish">
<titleInfo>
<title>A Luxembourgish Corpus as a Gender Bias Evaluation Testset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dimitra</namePart>
<namePart type="family">Anastasiou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carole</namePart>
<namePart type="family">Blond-Hanten</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie</namePart>
<namePart type="family">Gallais</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>According to the United Nations Development Programme, gender inequality is a metric that is composed of three dimensions: reproductive health, empowerment, and the labour market. Gender inequality is an obstacle to equal opportunities in society as a whole. In this paper we present our work-in-progress of designing and playing a physical game with digital elements. We currently conduct Conversation Analysis of transcribed speech of 58567 words and documenting bias. We also test OpenAI’s ChatGPT for bias in quiz-like gender-related questions.</abstract>
<identifier type="citekey">anastasiou-etal-2024-luxembourgish</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.70</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>784</start>
<end>788</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Luxembourgish Corpus as a Gender Bias Evaluation Testset
%A Anastasiou, Dimitra
%A Blond-Hanten, Carole
%A Gallais, Marie
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F anastasiou-etal-2024-luxembourgish
%X According to the United Nations Development Programme, gender inequality is a metric that is composed of three dimensions: reproductive health, empowerment, and the labour market. Gender inequality is an obstacle to equal opportunities in society as a whole. In this paper we present our work-in-progress of designing and playing a physical game with digital elements. We currently conduct Conversation Analysis of transcribed speech of 58567 words and documenting bias. We also test OpenAI’s ChatGPT for bias in quiz-like gender-related questions.
%U https://aclanthology.org/2024.lrec-main.70
%P 784-788
Markdown (Informal)
[A Luxembourgish Corpus as a Gender Bias Evaluation Testset](https://aclanthology.org/2024.lrec-main.70) (Anastasiou et al., LREC-COLING 2024)
ACL
- Dimitra Anastasiou, Carole Blond-Hanten, and Marie Gallais. 2024. A Luxembourgish Corpus as a Gender Bias Evaluation Testset. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 784–788, Torino, Italia. ELRA and ICCL.