InfoEnh: Towards Multimodal Sentiment Analysis via Information Bottleneck Filter and Optimal Transport Alignment

Yifeng Xie, Zhihong Zhu, Xuan Lu, Zhiqi Huang, Haoran Xiong


Abstract
In recent years, Multimodal Sentiment Analysis (MSA) leveraging deep learning has demonstrated exceptional performance in a wide range of domains. Its success lies in effectively utilizing information from multiple modalities to analyze sentiments. Despite these advancements, MSA is confronted with two significant challenges. Firstly, each modality often has a surplus of unimportance data, which can overshadow the essential information. Secondly, the crucial cues for sentiment analysis may conflict across different modalities, thereby complicating the analysis process. These issues have a certain impact on the model’s effectiveness in MSA tasks. To address these challenges, this paper introduces a novel method tailored for MSA, termed InfoEnh. This approach utilizes a masking technique as the bottleneck for information filtering, simultaneously maximizing mutual information to retain crucial data. Furthermore, the method integrates all modalities into a common feature space via domain adaptation, which is enhanced by the application of optimal transport. Extensive experiments conducted on two benchmark MSA datasets demonstrate the effectiveness of our proposed approach. Further analyzes indicate significant improvements over the baselines.
Anthology ID:
2024.lrec-main.795
Volume:
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Month:
May
Year:
2024
Address:
Torino, Italia
Editors:
Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
Venues:
LREC | COLING
SIG:
Publisher:
ELRA and ICCL
Note:
Pages:
9073–9083
Language:
URL:
https://aclanthology.org/2024.lrec-main.795
DOI:
Bibkey:
Cite (ACL):
Yifeng Xie, Zhihong Zhu, Xuan Lu, Zhiqi Huang, and Haoran Xiong. 2024. InfoEnh: Towards Multimodal Sentiment Analysis via Information Bottleneck Filter and Optimal Transport Alignment. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 9073–9083, Torino, Italia. ELRA and ICCL.
Cite (Informal):
InfoEnh: Towards Multimodal Sentiment Analysis via Information Bottleneck Filter and Optimal Transport Alignment (Xie et al., LREC-COLING 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.lrec-main.795.pdf