@inproceedings{xie-etal-2024-infoenh,
title = "{I}nfo{E}nh: Towards Multimodal Sentiment Analysis via Information Bottleneck Filter and Optimal Transport Alignment",
author = "Xie, Yifeng and
Zhu, Zhihong and
Lu, Xuan and
Huang, Zhiqi and
Xiong, Haoran",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.795",
pages = "9073--9083",
abstract = "In recent years, Multimodal Sentiment Analysis (MSA) leveraging deep learning has demonstrated exceptional performance in a wide range of domains. Its success lies in effectively utilizing information from multiple modalities to analyze sentiments. Despite these advancements, MSA is confronted with two significant challenges. Firstly, each modality often has a surplus of unimportance data, which can overshadow the essential information. Secondly, the crucial cues for sentiment analysis may conflict across different modalities, thereby complicating the analysis process. These issues have a certain impact on the model{'}s effectiveness in MSA tasks. To address these challenges, this paper introduces a novel method tailored for MSA, termed InfoEnh. This approach utilizes a masking technique as the bottleneck for information filtering, simultaneously maximizing mutual information to retain crucial data. Furthermore, the method integrates all modalities into a common feature space via domain adaptation, which is enhanced by the application of optimal transport. Extensive experiments conducted on two benchmark MSA datasets demonstrate the effectiveness of our proposed approach. Further analyzes indicate significant improvements over the baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xie-etal-2024-infoenh">
<titleInfo>
<title>InfoEnh: Towards Multimodal Sentiment Analysis via Information Bottleneck Filter and Optimal Transport Alignment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yifeng</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhihong</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuan</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiqi</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haoran</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In recent years, Multimodal Sentiment Analysis (MSA) leveraging deep learning has demonstrated exceptional performance in a wide range of domains. Its success lies in effectively utilizing information from multiple modalities to analyze sentiments. Despite these advancements, MSA is confronted with two significant challenges. Firstly, each modality often has a surplus of unimportance data, which can overshadow the essential information. Secondly, the crucial cues for sentiment analysis may conflict across different modalities, thereby complicating the analysis process. These issues have a certain impact on the model’s effectiveness in MSA tasks. To address these challenges, this paper introduces a novel method tailored for MSA, termed InfoEnh. This approach utilizes a masking technique as the bottleneck for information filtering, simultaneously maximizing mutual information to retain crucial data. Furthermore, the method integrates all modalities into a common feature space via domain adaptation, which is enhanced by the application of optimal transport. Extensive experiments conducted on two benchmark MSA datasets demonstrate the effectiveness of our proposed approach. Further analyzes indicate significant improvements over the baselines.</abstract>
<identifier type="citekey">xie-etal-2024-infoenh</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.795</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>9073</start>
<end>9083</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T InfoEnh: Towards Multimodal Sentiment Analysis via Information Bottleneck Filter and Optimal Transport Alignment
%A Xie, Yifeng
%A Zhu, Zhihong
%A Lu, Xuan
%A Huang, Zhiqi
%A Xiong, Haoran
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F xie-etal-2024-infoenh
%X In recent years, Multimodal Sentiment Analysis (MSA) leveraging deep learning has demonstrated exceptional performance in a wide range of domains. Its success lies in effectively utilizing information from multiple modalities to analyze sentiments. Despite these advancements, MSA is confronted with two significant challenges. Firstly, each modality often has a surplus of unimportance data, which can overshadow the essential information. Secondly, the crucial cues for sentiment analysis may conflict across different modalities, thereby complicating the analysis process. These issues have a certain impact on the model’s effectiveness in MSA tasks. To address these challenges, this paper introduces a novel method tailored for MSA, termed InfoEnh. This approach utilizes a masking technique as the bottleneck for information filtering, simultaneously maximizing mutual information to retain crucial data. Furthermore, the method integrates all modalities into a common feature space via domain adaptation, which is enhanced by the application of optimal transport. Extensive experiments conducted on two benchmark MSA datasets demonstrate the effectiveness of our proposed approach. Further analyzes indicate significant improvements over the baselines.
%U https://aclanthology.org/2024.lrec-main.795
%P 9073-9083
Markdown (Informal)
[InfoEnh: Towards Multimodal Sentiment Analysis via Information Bottleneck Filter and Optimal Transport Alignment](https://aclanthology.org/2024.lrec-main.795) (Xie et al., LREC-COLING 2024)
ACL