@inproceedings{marmol-romero-etal-2024-mentalriskes,
title = "{M}ental{R}isk{ES}: A New Corpus for Early Detection of Mental Disorders in {S}panish",
author = "M{\'a}rmol Romero, Alba M. and
Moreno Mu{\~n}oz, Adri{\'a}n and
Plaza-del-Arco, Flor Miriam and
Molina Gonz{\'a}lez, M. Dolores and
Mart{\'\i}n Valdivia, Mar{\'\i}a Teresa and
Ure{\~n}a-L{\'o}pez, L. Alfonso and
Montejo R{\'a}ez, Arturo",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.978",
pages = "11204--11214",
abstract = "With mental health issues on the rise on the Web, especially among young people, there is a growing need for effective identification and intervention. In this paper, we introduce a new open-sourced corpus for the early detection of mental disorders in Spanish, focusing on eating disorders, depression, and anxiety. It consists of user messages posted on groups within the Telegram message platform and contains over 1,300 subjects with more than 45,000 messages posted in different public Telegram groups. This corpus has been manually annotated via crowdsourcing and is prepared for its use in several Natural Language Processing tasks including text classification and regression tasks. The samples in the corpus include both text and time data. To provide a benchmark for future research, we conduct experiments on text classification and regression by using state-of-the-art transformer-based models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="marmol-romero-etal-2024-mentalriskes">
<titleInfo>
<title>MentalRiskES: A New Corpus for Early Detection of Mental Disorders in Spanish</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alba</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mármol Romero</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adrián</namePart>
<namePart type="family">Moreno Muñoz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Flor</namePart>
<namePart type="given">Miriam</namePart>
<namePart type="family">Plaza-del-Arco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="given">Dolores</namePart>
<namePart type="family">Molina González</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">María</namePart>
<namePart type="given">Teresa</namePart>
<namePart type="family">Martín Valdivia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="given">Alfonso</namePart>
<namePart type="family">Ureña-López</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arturo</namePart>
<namePart type="family">Montejo Ráez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With mental health issues on the rise on the Web, especially among young people, there is a growing need for effective identification and intervention. In this paper, we introduce a new open-sourced corpus for the early detection of mental disorders in Spanish, focusing on eating disorders, depression, and anxiety. It consists of user messages posted on groups within the Telegram message platform and contains over 1,300 subjects with more than 45,000 messages posted in different public Telegram groups. This corpus has been manually annotated via crowdsourcing and is prepared for its use in several Natural Language Processing tasks including text classification and regression tasks. The samples in the corpus include both text and time data. To provide a benchmark for future research, we conduct experiments on text classification and regression by using state-of-the-art transformer-based models.</abstract>
<identifier type="citekey">marmol-romero-etal-2024-mentalriskes</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-main.978</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>11204</start>
<end>11214</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MentalRiskES: A New Corpus for Early Detection of Mental Disorders in Spanish
%A Mármol Romero, Alba M.
%A Moreno Muñoz, Adrián
%A Plaza-del-Arco, Flor Miriam
%A Molina González, M. Dolores
%A Martín Valdivia, María Teresa
%A Ureña-López, L. Alfonso
%A Montejo Ráez, Arturo
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%Y Hoste, Veronique
%Y Lenci, Alessandro
%Y Sakti, Sakriani
%Y Xue, Nianwen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F marmol-romero-etal-2024-mentalriskes
%X With mental health issues on the rise on the Web, especially among young people, there is a growing need for effective identification and intervention. In this paper, we introduce a new open-sourced corpus for the early detection of mental disorders in Spanish, focusing on eating disorders, depression, and anxiety. It consists of user messages posted on groups within the Telegram message platform and contains over 1,300 subjects with more than 45,000 messages posted in different public Telegram groups. This corpus has been manually annotated via crowdsourcing and is prepared for its use in several Natural Language Processing tasks including text classification and regression tasks. The samples in the corpus include both text and time data. To provide a benchmark for future research, we conduct experiments on text classification and regression by using state-of-the-art transformer-based models.
%U https://aclanthology.org/2024.lrec-main.978
%P 11204-11214
Markdown (Informal)
[MentalRiskES: A New Corpus for Early Detection of Mental Disorders in Spanish](https://aclanthology.org/2024.lrec-main.978) (Mármol Romero et al., LREC-COLING 2024)
ACL
- Alba M. Mármol Romero, Adrián Moreno Muñoz, Flor Miriam Plaza-del-Arco, M. Dolores Molina González, María Teresa Martín Valdivia, L. Alfonso Ureña-López, and Arturo Montejo Ráez. 2024. MentalRiskES: A New Corpus for Early Detection of Mental Disorders in Spanish. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 11204–11214, Torino, Italia. ELRA and ICCL.