@inproceedings{priya-etal-2024-knowledge,
title = "Knowledge-enhanced Response Generation in Dialogue Systems: Current Advancements and Emerging Horizons",
author = "Priya, Priyanshu and
Varshney, Deeksha and
Firdaus, Mauajama and
Ekbal, Asif",
editor = "Klinger, Roman and
Okazaki, Naozaki and
Calzolari, Nicoletta and
Kan, Min-Yen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024): Tutorial Summaries",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-tutorials.13",
pages = "80--87",
abstract = "This tutorial provides an in-depth exploration of Knowledge-enhanced Dialogue Systems (KEDS), diving into their foundational aspects, methodologies, advantages, and practical applications. Topics include the distinction between internal and external knowledge integration, diverse methodologies employed in grounding dialogues, and innovative approaches to leveraging knowledge graphs for enhanced conversation quality. Furthermore, the tutorial touches upon the rise of biomedical text mining, the advent of domain-specific language models, and the challenges and strategies specific to medical dialogue generation. The primary objective is to give attendees a comprehensive understanding of KEDS. By delineating the nuances of these systems, the tutorial aims to elucidate their significance, highlight advancements made using deep learning, and pinpoint the current challenges. Special emphasis is placed on showcasing how KEDS can be fine-tuned for domain-specific requirements, with a spotlight on the healthcare sector. The tutorial is crafted for both beginners and intermediate researchers in the dialogue systems domain, with a focus on those keen on advancing research in KEDS. It will also be valuable for practitioners in sectors like healthcare, seeking to integrate advanced dialogue systems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="priya-etal-2024-knowledge">
<titleInfo>
<title>Knowledge-enhanced Response Generation in Dialogue Systems: Current Advancements and Emerging Horizons</title>
</titleInfo>
<name type="personal">
<namePart type="given">Priyanshu</namePart>
<namePart type="family">Priya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deeksha</namePart>
<namePart type="family">Varshney</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mauajama</namePart>
<namePart type="family">Firdaus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asif</namePart>
<namePart type="family">Ekbal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024): Tutorial Summaries</title>
</titleInfo>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naozaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This tutorial provides an in-depth exploration of Knowledge-enhanced Dialogue Systems (KEDS), diving into their foundational aspects, methodologies, advantages, and practical applications. Topics include the distinction between internal and external knowledge integration, diverse methodologies employed in grounding dialogues, and innovative approaches to leveraging knowledge graphs for enhanced conversation quality. Furthermore, the tutorial touches upon the rise of biomedical text mining, the advent of domain-specific language models, and the challenges and strategies specific to medical dialogue generation. The primary objective is to give attendees a comprehensive understanding of KEDS. By delineating the nuances of these systems, the tutorial aims to elucidate their significance, highlight advancements made using deep learning, and pinpoint the current challenges. Special emphasis is placed on showcasing how KEDS can be fine-tuned for domain-specific requirements, with a spotlight on the healthcare sector. The tutorial is crafted for both beginners and intermediate researchers in the dialogue systems domain, with a focus on those keen on advancing research in KEDS. It will also be valuable for practitioners in sectors like healthcare, seeking to integrate advanced dialogue systems.</abstract>
<identifier type="citekey">priya-etal-2024-knowledge</identifier>
<location>
<url>https://aclanthology.org/2024.lrec-tutorials.13</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>80</start>
<end>87</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Knowledge-enhanced Response Generation in Dialogue Systems: Current Advancements and Emerging Horizons
%A Priya, Priyanshu
%A Varshney, Deeksha
%A Firdaus, Mauajama
%A Ekbal, Asif
%Y Klinger, Roman
%Y Okazaki, Naozaki
%Y Calzolari, Nicoletta
%Y Kan, Min-Yen
%S Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024): Tutorial Summaries
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F priya-etal-2024-knowledge
%X This tutorial provides an in-depth exploration of Knowledge-enhanced Dialogue Systems (KEDS), diving into their foundational aspects, methodologies, advantages, and practical applications. Topics include the distinction between internal and external knowledge integration, diverse methodologies employed in grounding dialogues, and innovative approaches to leveraging knowledge graphs for enhanced conversation quality. Furthermore, the tutorial touches upon the rise of biomedical text mining, the advent of domain-specific language models, and the challenges and strategies specific to medical dialogue generation. The primary objective is to give attendees a comprehensive understanding of KEDS. By delineating the nuances of these systems, the tutorial aims to elucidate their significance, highlight advancements made using deep learning, and pinpoint the current challenges. Special emphasis is placed on showcasing how KEDS can be fine-tuned for domain-specific requirements, with a spotlight on the healthcare sector. The tutorial is crafted for both beginners and intermediate researchers in the dialogue systems domain, with a focus on those keen on advancing research in KEDS. It will also be valuable for practitioners in sectors like healthcare, seeking to integrate advanced dialogue systems.
%U https://aclanthology.org/2024.lrec-tutorials.13
%P 80-87
Markdown (Informal)
[Knowledge-enhanced Response Generation in Dialogue Systems: Current Advancements and Emerging Horizons](https://aclanthology.org/2024.lrec-tutorials.13) (Priya et al., LREC-COLING 2024)
ACL