@inproceedings{dev-etal-2024-approach,
title = "An Approach to Co-reference Resolution and Formula Grounding for Mathematical Identifiers Using Large Language Models",
author = "Dev, Aamin and
Asakura, Takuto and
S{\ae}tre, Rune",
editor = "Valentino, Marco and
Ferreira, Deborah and
Thayaparan, Mokanarangan and
Freitas, Andre",
booktitle = "Proceedings of the 2nd Workshop on Mathematical Natural Language Processing @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.mathnlp-1.1",
pages = "1--10",
abstract = "This paper outlines an automated approach to annotate mathematical identifiers in scientific papers {---} a process historically laborious and costly. We employ state-of-the-art LLMs, including GPT-3.5 and GPT-4, and open-source alternatives to generate a dictionary for annotating mathematical identifiers, linking each identifier to its conceivable descriptions and then assigning these definitions to the respective identifier in- stances based on context. Evaluation metrics include the CoNLL score for co-reference cluster quality and semantic correctness of the annotations.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dev-etal-2024-approach">
<titleInfo>
<title>An Approach to Co-reference Resolution and Formula Grounding for Mathematical Identifiers Using Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aamin</namePart>
<namePart type="family">Dev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Takuto</namePart>
<namePart type="family">Asakura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rune</namePart>
<namePart type="family">Sætre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Mathematical Natural Language Processing @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Valentino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deborah</namePart>
<namePart type="family">Ferreira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mokanarangan</namePart>
<namePart type="family">Thayaparan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Freitas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper outlines an automated approach to annotate mathematical identifiers in scientific papers — a process historically laborious and costly. We employ state-of-the-art LLMs, including GPT-3.5 and GPT-4, and open-source alternatives to generate a dictionary for annotating mathematical identifiers, linking each identifier to its conceivable descriptions and then assigning these definitions to the respective identifier in- stances based on context. Evaluation metrics include the CoNLL score for co-reference cluster quality and semantic correctness of the annotations.</abstract>
<identifier type="citekey">dev-etal-2024-approach</identifier>
<location>
<url>https://aclanthology.org/2024.mathnlp-1.1</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>1</start>
<end>10</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Approach to Co-reference Resolution and Formula Grounding for Mathematical Identifiers Using Large Language Models
%A Dev, Aamin
%A Asakura, Takuto
%A Sætre, Rune
%Y Valentino, Marco
%Y Ferreira, Deborah
%Y Thayaparan, Mokanarangan
%Y Freitas, Andre
%S Proceedings of the 2nd Workshop on Mathematical Natural Language Processing @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F dev-etal-2024-approach
%X This paper outlines an automated approach to annotate mathematical identifiers in scientific papers — a process historically laborious and costly. We employ state-of-the-art LLMs, including GPT-3.5 and GPT-4, and open-source alternatives to generate a dictionary for annotating mathematical identifiers, linking each identifier to its conceivable descriptions and then assigning these definitions to the respective identifier in- stances based on context. Evaluation metrics include the CoNLL score for co-reference cluster quality and semantic correctness of the annotations.
%U https://aclanthology.org/2024.mathnlp-1.1
%P 1-10
Markdown (Informal)
[An Approach to Co-reference Resolution and Formula Grounding for Mathematical Identifiers Using Large Language Models](https://aclanthology.org/2024.mathnlp-1.1) (Dev et al., MathNLP-WS 2024)
ACL