@inproceedings{zhao-etal-2024-mitigating,
title = "Mitigating Language-Level Performance Disparity in m{PLM}s via Teacher Language Selection and Cross-lingual Self-Distillation",
author = "Zhao, Haozhe and
Cai, Zefan and
Si, Shuzheng and
Chen, Liang and
He, Yufeng and
An, Kaikai and
Chang, Baobao",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.160/",
doi = "10.18653/v1/2024.naacl-long.160",
pages = "2893--2907",
abstract = "Large-scale multilingual Pretrained Language Models (mPLMs) yield impressive performance on cross-language tasks, yet significant performance disparities exist across different languages within the same mPLM. Previous studies endeavored to narrow these disparities by supervise fine-tuning the mPLMs with multilingual data.However, obtaining labeled multilingual data is time-consuming, and fine-tuning mPLM with limited labeled multilingual data merely encapsulates the knowledge specific to the labeled data.Therefore, we introduce **ALSACE** to leverage the learned knowledge from the well-performing languages to guide under-performing ones within the same mPLM, eliminating the need for additional labeled multilingual data. Experiments show that ALSACE effectively mitigates language-level performance disparity across various mPLMs while showing the competitive performance on different multilingual NLU tasks, ranging from full resource to limited resource settings. The code for our approach is available at https://github.com/pkunlp-icler/ALSACE."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2024-mitigating">
<titleInfo>
<title>Mitigating Language-Level Performance Disparity in mPLMs via Teacher Language Selection and Cross-lingual Self-Distillation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haozhe</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zefan</namePart>
<namePart type="family">Cai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuzheng</namePart>
<namePart type="family">Si</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yufeng</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kaikai</namePart>
<namePart type="family">An</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Baobao</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Large-scale multilingual Pretrained Language Models (mPLMs) yield impressive performance on cross-language tasks, yet significant performance disparities exist across different languages within the same mPLM. Previous studies endeavored to narrow these disparities by supervise fine-tuning the mPLMs with multilingual data.However, obtaining labeled multilingual data is time-consuming, and fine-tuning mPLM with limited labeled multilingual data merely encapsulates the knowledge specific to the labeled data.Therefore, we introduce **ALSACE** to leverage the learned knowledge from the well-performing languages to guide under-performing ones within the same mPLM, eliminating the need for additional labeled multilingual data. Experiments show that ALSACE effectively mitigates language-level performance disparity across various mPLMs while showing the competitive performance on different multilingual NLU tasks, ranging from full resource to limited resource settings. The code for our approach is available at https://github.com/pkunlp-icler/ALSACE.</abstract>
<identifier type="citekey">zhao-etal-2024-mitigating</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.160</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.160/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>2893</start>
<end>2907</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mitigating Language-Level Performance Disparity in mPLMs via Teacher Language Selection and Cross-lingual Self-Distillation
%A Zhao, Haozhe
%A Cai, Zefan
%A Si, Shuzheng
%A Chen, Liang
%A He, Yufeng
%A An, Kaikai
%A Chang, Baobao
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F zhao-etal-2024-mitigating
%X Large-scale multilingual Pretrained Language Models (mPLMs) yield impressive performance on cross-language tasks, yet significant performance disparities exist across different languages within the same mPLM. Previous studies endeavored to narrow these disparities by supervise fine-tuning the mPLMs with multilingual data.However, obtaining labeled multilingual data is time-consuming, and fine-tuning mPLM with limited labeled multilingual data merely encapsulates the knowledge specific to the labeled data.Therefore, we introduce **ALSACE** to leverage the learned knowledge from the well-performing languages to guide under-performing ones within the same mPLM, eliminating the need for additional labeled multilingual data. Experiments show that ALSACE effectively mitigates language-level performance disparity across various mPLMs while showing the competitive performance on different multilingual NLU tasks, ranging from full resource to limited resource settings. The code for our approach is available at https://github.com/pkunlp-icler/ALSACE.
%R 10.18653/v1/2024.naacl-long.160
%U https://aclanthology.org/2024.naacl-long.160/
%U https://doi.org/10.18653/v1/2024.naacl-long.160
%P 2893-2907
Markdown (Informal)
[Mitigating Language-Level Performance Disparity in mPLMs via Teacher Language Selection and Cross-lingual Self-Distillation](https://aclanthology.org/2024.naacl-long.160/) (Zhao et al., NAACL 2024)
ACL