@inproceedings{srikanth-etal-2024-pregnant,
title = "Pregnant Questions: The Importance of Pragmatic Awareness in Maternal Health Question Answering",
author = "Srikanth, Neha and
Sarkar, Rupak and
Mane, Heran and
Aparicio, Elizabeth and
Nguyen, Quynh and
Rudinger, Rachel and
Boyd-Graber, Jordan",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.403/",
doi = "10.18653/v1/2024.naacl-long.403",
pages = "7253--7268",
abstract = "Questions posed by information-seeking users often contain implicit false or potentially harmful assumptions. In a high-risk domain such as maternal and infant health, a question-answering system must recognize these pragmatic constraints and go beyond simply answering user questions, examining them in context to respond helpfully. To achieve this, we study assumptions and implications, or pragmatic inferences, made when mothers ask questions about pregnancy and infant care by collecting a dataset of 2,727 inferences from 500 questions across three diverse sources. We study how health experts naturally address these inferences when writing answers, and illustrate that informing existing QA pipelines with pragmatic inferences produces responses that are more complete, mitigating the propagation of harmful beliefs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="srikanth-etal-2024-pregnant">
<titleInfo>
<title>Pregnant Questions: The Importance of Pragmatic Awareness in Maternal Health Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Neha</namePart>
<namePart type="family">Srikanth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rupak</namePart>
<namePart type="family">Sarkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heran</namePart>
<namePart type="family">Mane</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elizabeth</namePart>
<namePart type="family">Aparicio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Quynh</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachel</namePart>
<namePart type="family">Rudinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Questions posed by information-seeking users often contain implicit false or potentially harmful assumptions. In a high-risk domain such as maternal and infant health, a question-answering system must recognize these pragmatic constraints and go beyond simply answering user questions, examining them in context to respond helpfully. To achieve this, we study assumptions and implications, or pragmatic inferences, made when mothers ask questions about pregnancy and infant care by collecting a dataset of 2,727 inferences from 500 questions across three diverse sources. We study how health experts naturally address these inferences when writing answers, and illustrate that informing existing QA pipelines with pragmatic inferences produces responses that are more complete, mitigating the propagation of harmful beliefs.</abstract>
<identifier type="citekey">srikanth-etal-2024-pregnant</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.403</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.403/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>7253</start>
<end>7268</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Pregnant Questions: The Importance of Pragmatic Awareness in Maternal Health Question Answering
%A Srikanth, Neha
%A Sarkar, Rupak
%A Mane, Heran
%A Aparicio, Elizabeth
%A Nguyen, Quynh
%A Rudinger, Rachel
%A Boyd-Graber, Jordan
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F srikanth-etal-2024-pregnant
%X Questions posed by information-seeking users often contain implicit false or potentially harmful assumptions. In a high-risk domain such as maternal and infant health, a question-answering system must recognize these pragmatic constraints and go beyond simply answering user questions, examining them in context to respond helpfully. To achieve this, we study assumptions and implications, or pragmatic inferences, made when mothers ask questions about pregnancy and infant care by collecting a dataset of 2,727 inferences from 500 questions across three diverse sources. We study how health experts naturally address these inferences when writing answers, and illustrate that informing existing QA pipelines with pragmatic inferences produces responses that are more complete, mitigating the propagation of harmful beliefs.
%R 10.18653/v1/2024.naacl-long.403
%U https://aclanthology.org/2024.naacl-long.403/
%U https://doi.org/10.18653/v1/2024.naacl-long.403
%P 7253-7268
Markdown (Informal)
[Pregnant Questions: The Importance of Pragmatic Awareness in Maternal Health Question Answering](https://aclanthology.org/2024.naacl-long.403/) (Srikanth et al., NAACL 2024)
ACL