@inproceedings{vashishtha-etal-2024-famus,
title = "{FAM}u{S}: Frames Across Multiple Sources",
author = "Vashishtha, Siddharth and
Martin, Alexander and
Gantt, William and
Van Durme, Benjamin and
White, Aaron",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.457/",
doi = "10.18653/v1/2024.naacl-long.457",
pages = "8250--8273",
abstract = "Understanding event descriptions is a central aspect of language processing, but current approaches focus overwhelmingly on single sentences or documents. Aggregating information about an event across documents can offer a much richer understanding. To this end, we present FAMuS, a new corpus of Wikipedia passages that report on some event, paired with underlying, genre-diverse (non-Wikipedia) source articles for the same event. Events and (cross-sentence) arguments in both report and source are annotated against FrameNet, providing broad coverage of different event types. We present results on two key event understanding tasks enabled by FAMuS: source validation{---}determining whether a document is a valid source for a target report event{---}and cross-document argument extraction{---}full-document argument extraction for a target event from both its report and the correct source article."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vashishtha-etal-2024-famus">
<titleInfo>
<title>FAMuS: Frames Across Multiple Sources</title>
</titleInfo>
<name type="personal">
<namePart type="given">Siddharth</namePart>
<namePart type="family">Vashishtha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Martin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Gantt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aaron</namePart>
<namePart type="family">White</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding event descriptions is a central aspect of language processing, but current approaches focus overwhelmingly on single sentences or documents. Aggregating information about an event across documents can offer a much richer understanding. To this end, we present FAMuS, a new corpus of Wikipedia passages that report on some event, paired with underlying, genre-diverse (non-Wikipedia) source articles for the same event. Events and (cross-sentence) arguments in both report and source are annotated against FrameNet, providing broad coverage of different event types. We present results on two key event understanding tasks enabled by FAMuS: source validation—determining whether a document is a valid source for a target report event—and cross-document argument extraction—full-document argument extraction for a target event from both its report and the correct source article.</abstract>
<identifier type="citekey">vashishtha-etal-2024-famus</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-long.457</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-long.457/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>8250</start>
<end>8273</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FAMuS: Frames Across Multiple Sources
%A Vashishtha, Siddharth
%A Martin, Alexander
%A Gantt, William
%A Van Durme, Benjamin
%A White, Aaron
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F vashishtha-etal-2024-famus
%X Understanding event descriptions is a central aspect of language processing, but current approaches focus overwhelmingly on single sentences or documents. Aggregating information about an event across documents can offer a much richer understanding. To this end, we present FAMuS, a new corpus of Wikipedia passages that report on some event, paired with underlying, genre-diverse (non-Wikipedia) source articles for the same event. Events and (cross-sentence) arguments in both report and source are annotated against FrameNet, providing broad coverage of different event types. We present results on two key event understanding tasks enabled by FAMuS: source validation—determining whether a document is a valid source for a target report event—and cross-document argument extraction—full-document argument extraction for a target event from both its report and the correct source article.
%R 10.18653/v1/2024.naacl-long.457
%U https://aclanthology.org/2024.naacl-long.457/
%U https://doi.org/10.18653/v1/2024.naacl-long.457
%P 8250-8273
Markdown (Informal)
[FAMuS: Frames Across Multiple Sources](https://aclanthology.org/2024.naacl-long.457/) (Vashishtha et al., NAACL 2024)
ACL
- Siddharth Vashishtha, Alexander Martin, William Gantt, Benjamin Van Durme, and Aaron White. 2024. FAMuS: Frames Across Multiple Sources. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 8250–8273, Mexico City, Mexico. Association for Computational Linguistics.