@inproceedings{zhou-etal-2024-gendecider,
title = "{G}en{D}ecider: Integrating {\textquotedblleft}None of the Candidates{\textquotedblright} Judgments in Zero-Shot Entity Linking Re-ranking",
author = "Zhou, Kang and
Li, Yuepei and
Wang, Qing and
Qiao, Qiao and
Li, Qi",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-short.22/",
doi = "10.18653/v1/2024.naacl-short.22",
pages = "239--245",
abstract = "We introduce GenDecider, a novel re-ranking approach for Zero-Shot Entity Linking (ZSEL), built on the Llama model. It innovatively detects scenarios where the correct entity is not among the retrieved candidates, a common oversight in existing re-ranking methods. By autoregressively generating outputs based on the context of the entity mention and the candidate entities, GenDecider significantly enhances disambiguation, improving the accuracy and reliability of ZSEL systems, as demonstrated on the benchmark ZESHEL dataset. Our code is available at https://github.com/kangISU/GenDecider."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhou-etal-2024-gendecider">
<titleInfo>
<title>GenDecider: Integrating “None of the Candidates” Judgments in Zero-Shot Entity Linking Re-ranking</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kang</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuepei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qing</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiao</namePart>
<namePart type="family">Qiao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce GenDecider, a novel re-ranking approach for Zero-Shot Entity Linking (ZSEL), built on the Llama model. It innovatively detects scenarios where the correct entity is not among the retrieved candidates, a common oversight in existing re-ranking methods. By autoregressively generating outputs based on the context of the entity mention and the candidate entities, GenDecider significantly enhances disambiguation, improving the accuracy and reliability of ZSEL systems, as demonstrated on the benchmark ZESHEL dataset. Our code is available at https://github.com/kangISU/GenDecider.</abstract>
<identifier type="citekey">zhou-etal-2024-gendecider</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-short.22</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-short.22/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>239</start>
<end>245</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GenDecider: Integrating “None of the Candidates” Judgments in Zero-Shot Entity Linking Re-ranking
%A Zhou, Kang
%A Li, Yuepei
%A Wang, Qing
%A Qiao, Qiao
%A Li, Qi
%Y Duh, Kevin
%Y Gomez, Helena
%Y Bethard, Steven
%S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)
%D 2024
%8 June
%I Association for Computational Linguistics
%C Mexico City, Mexico
%F zhou-etal-2024-gendecider
%X We introduce GenDecider, a novel re-ranking approach for Zero-Shot Entity Linking (ZSEL), built on the Llama model. It innovatively detects scenarios where the correct entity is not among the retrieved candidates, a common oversight in existing re-ranking methods. By autoregressively generating outputs based on the context of the entity mention and the candidate entities, GenDecider significantly enhances disambiguation, improving the accuracy and reliability of ZSEL systems, as demonstrated on the benchmark ZESHEL dataset. Our code is available at https://github.com/kangISU/GenDecider.
%R 10.18653/v1/2024.naacl-short.22
%U https://aclanthology.org/2024.naacl-short.22/
%U https://doi.org/10.18653/v1/2024.naacl-short.22
%P 239-245
Markdown (Informal)
[GenDecider: Integrating “None of the Candidates” Judgments in Zero-Shot Entity Linking Re-ranking](https://aclanthology.org/2024.naacl-short.22/) (Zhou et al., NAACL 2024)
ACL