@inproceedings{tao-etal-2024-rolecraft,
title = "{R}ole{C}raft-{GLM}: Advancing Personalized Role-Playing in Large Language Models",
author = "Tao, Meiling and
Xuechen, Liang and
Shi, Tianyu and
Yu, Lei and
Xie, Yiting",
editor = "Deshpande, Ameet and
Hwang, EunJeong and
Murahari, Vishvak and
Park, Joon Sung and
Yang, Diyi and
Sabharwal, Ashish and
Narasimhan, Karthik and
Kalyan, Ashwin",
booktitle = "Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024)",
month = mar,
year = "2024",
address = "St. Julians, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.personalize-1.1/",
pages = "1--9",
abstract = "This study presents RoleCraft-GLM, an innovative framework aimed at enhancing personalized role-playing with Large Language Models (LLMs). RoleCraft-GLM addresses the key issue of lacking personalized interactions in conversational AI, and offers a solution with detailed and emotionally nuanced character portrayals. We contribute a unique conversational dataset that shifts from conventional celebrity-centric characters to diverse, non-celebrity personas, thus enhancing the realism and complexity of language modeling interactions. Additionally, our approach includes meticulous character development, ensuring dialogues are both realistic and emotionally resonant. The effectiveness of RoleCraft-GLM is validated through various case studies, highlighting its versatility and skill in different scenarios. Our framework excels in generating dialogues that accurately reflect characters' personality traits and emotions, thereby boosting user engagement. In conclusion, RoleCraft-GLM marks a significant leap in personalized AI interactions, and paves the way for more authentic and immersive AI-assisted role-playing experiences by enabling more nuanced and emotionally rich dialogues."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tao-etal-2024-rolecraft">
<titleInfo>
<title>RoleCraft-GLM: Advancing Personalized Role-Playing in Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Meiling</namePart>
<namePart type="family">Tao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Xuechen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tianyu</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiting</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ameet</namePart>
<namePart type="family">Deshpande</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">EunJeong</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vishvak</namePart>
<namePart type="family">Murahari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joon</namePart>
<namePart type="given">Sung</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diyi</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashish</namePart>
<namePart type="family">Sabharwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karthik</namePart>
<namePart type="family">Narasimhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ashwin</namePart>
<namePart type="family">Kalyan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julians, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study presents RoleCraft-GLM, an innovative framework aimed at enhancing personalized role-playing with Large Language Models (LLMs). RoleCraft-GLM addresses the key issue of lacking personalized interactions in conversational AI, and offers a solution with detailed and emotionally nuanced character portrayals. We contribute a unique conversational dataset that shifts from conventional celebrity-centric characters to diverse, non-celebrity personas, thus enhancing the realism and complexity of language modeling interactions. Additionally, our approach includes meticulous character development, ensuring dialogues are both realistic and emotionally resonant. The effectiveness of RoleCraft-GLM is validated through various case studies, highlighting its versatility and skill in different scenarios. Our framework excels in generating dialogues that accurately reflect characters’ personality traits and emotions, thereby boosting user engagement. In conclusion, RoleCraft-GLM marks a significant leap in personalized AI interactions, and paves the way for more authentic and immersive AI-assisted role-playing experiences by enabling more nuanced and emotionally rich dialogues.</abstract>
<identifier type="citekey">tao-etal-2024-rolecraft</identifier>
<location>
<url>https://aclanthology.org/2024.personalize-1.1/</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>1</start>
<end>9</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RoleCraft-GLM: Advancing Personalized Role-Playing in Large Language Models
%A Tao, Meiling
%A Xuechen, Liang
%A Shi, Tianyu
%A Yu, Lei
%A Xie, Yiting
%Y Deshpande, Ameet
%Y Hwang, EunJeong
%Y Murahari, Vishvak
%Y Park, Joon Sung
%Y Yang, Diyi
%Y Sabharwal, Ashish
%Y Narasimhan, Karthik
%Y Kalyan, Ashwin
%S Proceedings of the 1st Workshop on Personalization of Generative AI Systems (PERSONALIZE 2024)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julians, Malta
%F tao-etal-2024-rolecraft
%X This study presents RoleCraft-GLM, an innovative framework aimed at enhancing personalized role-playing with Large Language Models (LLMs). RoleCraft-GLM addresses the key issue of lacking personalized interactions in conversational AI, and offers a solution with detailed and emotionally nuanced character portrayals. We contribute a unique conversational dataset that shifts from conventional celebrity-centric characters to diverse, non-celebrity personas, thus enhancing the realism and complexity of language modeling interactions. Additionally, our approach includes meticulous character development, ensuring dialogues are both realistic and emotionally resonant. The effectiveness of RoleCraft-GLM is validated through various case studies, highlighting its versatility and skill in different scenarios. Our framework excels in generating dialogues that accurately reflect characters’ personality traits and emotions, thereby boosting user engagement. In conclusion, RoleCraft-GLM marks a significant leap in personalized AI interactions, and paves the way for more authentic and immersive AI-assisted role-playing experiences by enabling more nuanced and emotionally rich dialogues.
%U https://aclanthology.org/2024.personalize-1.1/
%P 1-9
Markdown (Informal)
[RoleCraft-GLM: Advancing Personalized Role-Playing in Large Language Models](https://aclanthology.org/2024.personalize-1.1/) (Tao et al., PERSONALIZE 2024)
ACL