@inproceedings{evgrafova-etal-2024-analysing,
title = "Analysing Pathos in User-Generated Argumentative Text",
author = "Evgrafova, Natalia and
Hoste, Veronique and
Lefever, Els",
editor = "Afli, Haithem and
Bouamor, Houda and
Casagran, Cristina Blasi and
Ghannay, Sahar",
booktitle = "Proceedings of the Second Workshop on Natural Language Processing for Political Sciences @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.politicalnlp-1.5/",
pages = "39--44",
abstract = "While persuasion has been extensively examined in the context of politicians' speeches, there exists a notable gap in the understanding of the pathos role in user-generated argumentation. This paper presents an exploratory study into the pathos dimension of user-generated arguments and formulates ideas on how pathos could be incorporated in argument mining. Using existing sentiment and emotion detection tools, this research aims to obtain insights into the role of emotion in argumentative public discussion on controversial topics, explores the connection between sentiment and stance, and detects frequent emotion-related words for a given topic."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="evgrafova-etal-2024-analysing">
<titleInfo>
<title>Analysing Pathos in User-Generated Argumentative Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Natalia</namePart>
<namePart type="family">Evgrafova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Els</namePart>
<namePart type="family">Lefever</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Natural Language Processing for Political Sciences @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haithem</namePart>
<namePart type="family">Afli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cristina</namePart>
<namePart type="given">Blasi</namePart>
<namePart type="family">Casagran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sahar</namePart>
<namePart type="family">Ghannay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While persuasion has been extensively examined in the context of politicians’ speeches, there exists a notable gap in the understanding of the pathos role in user-generated argumentation. This paper presents an exploratory study into the pathos dimension of user-generated arguments and formulates ideas on how pathos could be incorporated in argument mining. Using existing sentiment and emotion detection tools, this research aims to obtain insights into the role of emotion in argumentative public discussion on controversial topics, explores the connection between sentiment and stance, and detects frequent emotion-related words for a given topic.</abstract>
<identifier type="citekey">evgrafova-etal-2024-analysing</identifier>
<location>
<url>https://aclanthology.org/2024.politicalnlp-1.5/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>39</start>
<end>44</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analysing Pathos in User-Generated Argumentative Text
%A Evgrafova, Natalia
%A Hoste, Veronique
%A Lefever, Els
%Y Afli, Haithem
%Y Bouamor, Houda
%Y Casagran, Cristina Blasi
%Y Ghannay, Sahar
%S Proceedings of the Second Workshop on Natural Language Processing for Political Sciences @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F evgrafova-etal-2024-analysing
%X While persuasion has been extensively examined in the context of politicians’ speeches, there exists a notable gap in the understanding of the pathos role in user-generated argumentation. This paper presents an exploratory study into the pathos dimension of user-generated arguments and formulates ideas on how pathos could be incorporated in argument mining. Using existing sentiment and emotion detection tools, this research aims to obtain insights into the role of emotion in argumentative public discussion on controversial topics, explores the connection between sentiment and stance, and detects frequent emotion-related words for a given topic.
%U https://aclanthology.org/2024.politicalnlp-1.5/
%P 39-44
Markdown (Informal)
[Analysing Pathos in User-Generated Argumentative Text](https://aclanthology.org/2024.politicalnlp-1.5/) (Evgrafova et al., PoliticalNLP 2024)
ACL
- Natalia Evgrafova, Veronique Hoste, and Els Lefever. 2024. Analysing Pathos in User-Generated Argumentative Text. In Proceedings of the Second Workshop on Natural Language Processing for Political Sciences @ LREC-COLING 2024, pages 39–44, Torino, Italia. ELRA and ICCL.