@inproceedings{singh-etal-2024-learning,
title = "Learning New Tasks from a Few Examples with Soft-Label Prototypes",
author = "Singh, Avyav and
Shutova, Ekaterina and
Yannakoudakis, Helen",
editor = "Zhao, Chen and
Mosbach, Marius and
Atanasova, Pepa and
Goldfarb-Tarrent, Seraphina and
Hase, Peter and
Hosseini, Arian and
Elbayad, Maha and
Pezzelle, Sandro and
Mozes, Maximilian",
booktitle = "Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.repl4nlp-1.16",
pages = "215--236",
abstract = "Existing approaches to few-shot learning in NLP rely on large language models (LLMs) and/or fine-tuning of these to generalise on out-of-distribution data. In this work, we propose a novel few-shot learning approach based on soft-label prototypes (SLPs) designed to collectively capture the distribution of different classes across the input domain space. We focus on learning previously unseen NLP tasks from very few examples (4, 8, 16) per class and experimentally demonstrate that our approach achieves superior performance on the majority of tested tasks in this data-lean setting while being highly parameter efficient. We also show that our few-shot adaptation method can be integrated into more generalised learning settings, primarily meta-learning, to yield superior performance against strong baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="singh-etal-2024-learning">
<titleInfo>
<title>Learning New Tasks from a Few Examples with Soft-Label Prototypes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Avyav</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chen</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marius</namePart>
<namePart type="family">Mosbach</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pepa</namePart>
<namePart type="family">Atanasova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seraphina</namePart>
<namePart type="family">Goldfarb-Tarrent</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Hase</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arian</namePart>
<namePart type="family">Hosseini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maha</namePart>
<namePart type="family">Elbayad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sandro</namePart>
<namePart type="family">Pezzelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maximilian</namePart>
<namePart type="family">Mozes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing approaches to few-shot learning in NLP rely on large language models (LLMs) and/or fine-tuning of these to generalise on out-of-distribution data. In this work, we propose a novel few-shot learning approach based on soft-label prototypes (SLPs) designed to collectively capture the distribution of different classes across the input domain space. We focus on learning previously unseen NLP tasks from very few examples (4, 8, 16) per class and experimentally demonstrate that our approach achieves superior performance on the majority of tested tasks in this data-lean setting while being highly parameter efficient. We also show that our few-shot adaptation method can be integrated into more generalised learning settings, primarily meta-learning, to yield superior performance against strong baselines.</abstract>
<identifier type="citekey">singh-etal-2024-learning</identifier>
<location>
<url>https://aclanthology.org/2024.repl4nlp-1.16</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>215</start>
<end>236</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning New Tasks from a Few Examples with Soft-Label Prototypes
%A Singh, Avyav
%A Shutova, Ekaterina
%A Yannakoudakis, Helen
%Y Zhao, Chen
%Y Mosbach, Marius
%Y Atanasova, Pepa
%Y Goldfarb-Tarrent, Seraphina
%Y Hase, Peter
%Y Hosseini, Arian
%Y Elbayad, Maha
%Y Pezzelle, Sandro
%Y Mozes, Maximilian
%S Proceedings of the 9th Workshop on Representation Learning for NLP (RepL4NLP-2024)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F singh-etal-2024-learning
%X Existing approaches to few-shot learning in NLP rely on large language models (LLMs) and/or fine-tuning of these to generalise on out-of-distribution data. In this work, we propose a novel few-shot learning approach based on soft-label prototypes (SLPs) designed to collectively capture the distribution of different classes across the input domain space. We focus on learning previously unseen NLP tasks from very few examples (4, 8, 16) per class and experimentally demonstrate that our approach achieves superior performance on the majority of tested tasks in this data-lean setting while being highly parameter efficient. We also show that our few-shot adaptation method can be integrated into more generalised learning settings, primarily meta-learning, to yield superior performance against strong baselines.
%U https://aclanthology.org/2024.repl4nlp-1.16
%P 215-236
Markdown (Informal)
[Learning New Tasks from a Few Examples with Soft-Label Prototypes](https://aclanthology.org/2024.repl4nlp-1.16) (Singh et al., RepL4NLP-WS 2024)
ACL