@inproceedings{hassan-graham-2024-advancing,
title = "Advancing Open-Domain Conversational Agents - Designing an Engaging System for Natural Multi-Turn Dialogue",
author = "Hassan, Islam A. and
Graham, Yvette",
editor = "Graham, Yvette and
Liu, Qun and
Lampouras, Gerasimos and
Iacobacci, Ignacio and
Madden, Sinead and
Khalid, Haider and
Qureshi, Rameez",
booktitle = "Proceedings of the 1st Workshop on Simulating Conversational Intelligence in Chat (SCI-CHAT 2024)",
month = mar,
year = "2024",
address = "St. Julians, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.scichat-1.8",
pages = "75--79",
abstract = "This system paper describes our conversational AI agent developed for the SCI-CHAT competition. The goal is to build automated dialogue agents that can have natural, coherent conversations with humans over multiple turns. Our model is based on fine-tuning the Snorkel-Mistral-PairRM-DPO language model on podcast conversation transcripts. This allows the model to leverage Snorkel-Mistral-PairRMDPO{'}s linguistic knowledge while adapting it for multi-turn dialogue modeling using LoRA. During evaluation, human judges will converse with the agent on specified topics and provide ratings on response quality. Our system aims to demonstrate how large pretrained language models, when properly adapted and evaluated, can effectively converse on open-ended topics spanning multiple turns.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hassan-graham-2024-advancing">
<titleInfo>
<title>Advancing Open-Domain Conversational Agents - Designing an Engaging System for Natural Multi-Turn Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Islam</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Hassan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Workshop on Simulating Conversational Intelligence in Chat (SCI-CHAT 2024)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gerasimos</namePart>
<namePart type="family">Lampouras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ignacio</namePart>
<namePart type="family">Iacobacci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sinead</namePart>
<namePart type="family">Madden</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haider</namePart>
<namePart type="family">Khalid</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rameez</namePart>
<namePart type="family">Qureshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julians, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This system paper describes our conversational AI agent developed for the SCI-CHAT competition. The goal is to build automated dialogue agents that can have natural, coherent conversations with humans over multiple turns. Our model is based on fine-tuning the Snorkel-Mistral-PairRM-DPO language model on podcast conversation transcripts. This allows the model to leverage Snorkel-Mistral-PairRMDPO’s linguistic knowledge while adapting it for multi-turn dialogue modeling using LoRA. During evaluation, human judges will converse with the agent on specified topics and provide ratings on response quality. Our system aims to demonstrate how large pretrained language models, when properly adapted and evaluated, can effectively converse on open-ended topics spanning multiple turns.</abstract>
<identifier type="citekey">hassan-graham-2024-advancing</identifier>
<location>
<url>https://aclanthology.org/2024.scichat-1.8</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>75</start>
<end>79</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Advancing Open-Domain Conversational Agents - Designing an Engaging System for Natural Multi-Turn Dialogue
%A Hassan, Islam A.
%A Graham, Yvette
%Y Graham, Yvette
%Y Liu, Qun
%Y Lampouras, Gerasimos
%Y Iacobacci, Ignacio
%Y Madden, Sinead
%Y Khalid, Haider
%Y Qureshi, Rameez
%S Proceedings of the 1st Workshop on Simulating Conversational Intelligence in Chat (SCI-CHAT 2024)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julians, Malta
%F hassan-graham-2024-advancing
%X This system paper describes our conversational AI agent developed for the SCI-CHAT competition. The goal is to build automated dialogue agents that can have natural, coherent conversations with humans over multiple turns. Our model is based on fine-tuning the Snorkel-Mistral-PairRM-DPO language model on podcast conversation transcripts. This allows the model to leverage Snorkel-Mistral-PairRMDPO’s linguistic knowledge while adapting it for multi-turn dialogue modeling using LoRA. During evaluation, human judges will converse with the agent on specified topics and provide ratings on response quality. Our system aims to demonstrate how large pretrained language models, when properly adapted and evaluated, can effectively converse on open-ended topics spanning multiple turns.
%U https://aclanthology.org/2024.scichat-1.8
%P 75-79
Markdown (Informal)
[Advancing Open-Domain Conversational Agents - Designing an Engaging System for Natural Multi-Turn Dialogue](https://aclanthology.org/2024.scichat-1.8) (Hassan & Graham, SCI-CHAT-WS 2024)
ACL